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In this article we address the question: “What are the implications for the preparation of
prospective elementary teachers of “early algebra” in the elementary grades curriculum?
As we discuss this question it will become clear that part of our answer involves language
aspects of algebra: in particular, how a change in pre-service teachers’ attitudes to
algebra, from instrumental to relational, is correlated with learning the conventional
meaning of algebraic and other mathematical terms.

Mathematics learning and teaching as procedures
Educators of pre-service elementary teachers face a constant challenge: their students’

limited understanding of what constitutes mathematics and a mathematical approach to
problems. Pre-service elementary teachers’ attitudes to mathematics are generally instrumental,
focussed on formulas and correct answers. Here are some illustrative remarks from our students:

 “I was used to having a formula and all I cared about was getting the right answer.”
“… we all came in with our preconceived notions of mathematics as simply finding a formula and
getting the right answer …”
“All throughout school, we have been taught that mathematics is simply just plugging numbers into
a learned equation. The teacher would just show us the equation dealing with what we were
studying and we would complete the equation given different numbers because we were shown
how to do it.”

(Quotes: pre-service elementary teachers at Harper College, Fall, 2000)
Pre-service elementary teachers are generally inflexible in their thinking, and rarely see

connections between different problems or parts of mathematics. As they see mathematics so
they are likely to teach it. Is this a bad thing? Smith III (1996), for example, argues that an
instrumental approach to teaching mathematics provides a teacher with a robust sense of
efficacy. Many pre-service teachers believe this is the only approach to teaching mathematics
that will provide them with a sense of competence, proficiency, and know-how. What our
experience tells us, however, is that they can see no other way. It is not that they have reflected
on an instrumental, procedural style of teaching mathematics—an acquisition model (Sfard,
1998)—versus a conceptual, participation model and made a considered choice: they simply are
not aware the conceptual approach exists (Davis & McGowen, 2001). But what is wrong with
an instrumental, procedural approach to mathematics, especially to algebra which is replete with
rules and procedures? Gregoire (1999) provides an important part of the answer. In a detailed
study of a grade 8 teacher she found evidence for a number of obstacles to learning. These
obstacles—student misconceptions, irregular student achievement, student dependence, and lack
of student self motivation—were associated with a predominantly procedural mode of teaching
mathematics. In graphic terms, a lesson to be learned from Gregoire’s study, together with that
of Smith III, is that a procedural approach to teaching mathematics helps the teacher feel more
confident, but predisposes the students to dependence, lack of motivation, and misconceptions.
When we focus on student learning, rather than teacher efficacy, this is not a happy state of
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affairs. How then might we encourage a more relational view of mathematics and what does this
have to do with the teaching and learning of algebra in elementary schools?

Algebra as a meaningful experience
Our answer to these questions began with an example and led to a principle. We wanted

to know how to enhance pre-service elementary teachers flexibility of thinking, and their ability
to see and value connections. In so doing we focused on a particular case of a young student’s
beautiful experience in establishing connections between systematic counting and algebra
(Maher & Speiser, 1997). This work, part of a larger study by Carolyn Maher, illustrated how
Stephanie's memories of building block towers provided her with a visual model for binomial
expansions in algebra. If a route from concrete manipulatives to syntactic algebraic expressions
was available to one young student, might it also be open to pre-service elementary teachers?
Our answer is “yes” (Davis & McGowen, 2001, McGowen & Davis, 2001) and it is from this
answer that we draw a principle. The 19 preservice elementary teachers taught in Fall 2000 at
Harper College, all underwent a substantial change in their views of mathematics. The principal
agent for this change was the focus on building connections between different representations of
a problem. How did these problems relate to algebra? These problems were variants of a single
problem, involving binary choice:

! How many towers of height 4 can be made from blocks of 2 colors? How many towers of
height 5?

! On the grid shown below, indicate on each dot how many different ways there are to walk
to that dot from “home” given that you can only walk UP or RIGHT.

Figure 1. Portion of an integer lattice on which students performed walks
                          Up or RIGHT from “home” to adjoining dots.

! How many different ways are there to run through a series of 4 tunnels if you must pass
through exactly two white and two black tunnels?

Figure 2: At each point, the runner goes through only a black or white tunnel.

! (a + b)2 = a2 + 2ab + b2. What are the corresponding expansions for (a + b) 3 and (a + b) 4?

! What are the connections between towers, grid walks, tunnels and binomial expansions?

The problems we chose were unlikely to allow a solution by a remembered formula. For
example, in relation to the problem of how many towers of height 4 can be built using at most
two colors of blocks, one student wrote:

home



“Instead of looking at it as a math problem, I was looking at it as a building exercise. I first
attempted the problem by guessing and testing. Tony and I first attempted the problem of four high
by creating combinations of four that would design an obvious pattern.”

In our view the algebra entered in at least two ways. First, as a way of stating
generalizations of building towers when students wrote 2n as the number of towers of height n
that can be made from at most 2 colors. In a later problem involving building towers from 3
colors, some students generalized their algebraic formulas:

“34 = 81, n = # of cubes high; x = # of color choices; formula: xn.
Secondly, algebra entered the picture explicitly as syntactic algebra in the expansions

for (a + b)3 and (a + b)4, the sort of syntactic expressions that most people associate with
“algebra”.  Except for one student this syntactic algebra was beyond them: they were unable to
expand the binomial terms correctly. For the students, however, a different perspective
developed on these syntactic expressions. One student speculated during class that there might
be a connection between towers, grid walks and binomial expansions. He gave an explanation in
class, prefaced by a statement along the lines “this might be crazy, but I think…,” that (a + b)2 =
a2 + 2ab  + b2 could be interpreted as saying something about block towers and grid walks.
Namely, if a and b were interpreted as two colors, the binomial expansion says there is 1 tower
of height two built from the “a” color, 1 from the “b” color, and 2 using both the “a” and “b”
colors. The student used black (B) and white (W) and wrote the binomial expansion as (B + W)2

= B2 + 2BW + B2. He then interpreted the same expression in terms of grid walks by taking B to
mean “walk UP” and W to mean “walk RIGHT”. Finally, he related towers and grid walks to
the other binomial expansions, and the patterns of numbers on the grid to Pascal’s triangle. The
atmosphere following this student’s presentation to the class was electric. The other students
gave him a spontaneous round of applause and he, with four other students, stayed for an hour
after class exploring these connections. This episode was etched into the memory of many of the
students, as student write-ups and reflections show:

“If you go through the tunnel with the pattern of BWBW, you can also make a tower of BWBW. If
you think of B as equalling right and W as equalling up, you can go RURU. Algebraically, you can
replace the a and b with a B and W and have (B+W) raised to whichever high, which I’m using 4. It
shows (B+W)4 = B4+ 4B3W + 6B2W2 + 4BW3 + W4. If you add up all the numbers in front, you get
the number of possibilities. The exponents are the number of the different colors you have. Ex:
4B3W means there are 3 blacks and 1 white, with 4 different ways of arranging it. To have two of
each like the tunnels ask, would be 6B2W2, which means there are 6 possibilities with 2 black and 2
white.”  (Reflection, Week 4)

 “… although I used Pascal’s triangle many times throughout high school, I never truly understood
why it worked. By completing the grid walk exercises, so many things have become clear to me.
Well, I learned the secret of the grid walks and of Pascal’s Triangle…. I really wish I had known
this when I was in Algebra. All we were taught then was that, for some reason unknown to me and
probably many others in the class, the rows of Pascal’s Triangle made up the coefficients in
binomial expansion. Now I not only understand how to use the triangle algebraically, I know why
it works. The numbers in an algebraic expression along with the variables can represent different
groups of objects, in a manner of speaking. It all makes sense. This simple understanding, but by
no means easy, is so rewarding because the knowledge has become my own. And I know that ten
years from now, I will still be able to explain this problem.”  (End-of-semester write-up, week 16)

This interpretation of the syntactic expansions of the binomial expressions was used by
many of the students in the solution of other problems. For example, in solving how many
pizzas can be made from a base and 8 possible toppings, some students responded as follows:



“n = without toppings; w = with toppings; (n + w)8 = total combinations;

coefficients = number in each of the subsets. Subsets = binomial coefficients”

What does this tell us? The semantic references for the binomial expressions (a + b)n

have changed. Formerly, the references were at best indexical (Deacon, 1997)—a conditioned
response, signifying nothing more than a way of acting in a given context. Now, the references
for the binomial expressions have become symbolic, referring both to manifold objects and
processes, as well as to other syntactic marks, such as 6a2b2. Students now see (a + b)n as a
binomial, representing two choices in the context of these problems. Without wanting to delve
too much into semiotics, we feel that the common term “mathematical symbols” to refer to
squiggles such as (a + b)n glosses over the deep interpretation and shift in thinking that takes
place when, as for these students, the squiggles become genuinely symbolic—symbolizing
something:

“When we started with blocks I still remember thinking, ‘There has to be an easier way of doing
this. I need some sort of an equation or something and that’s it.’ I never realized how important,
especially for children, it is to visualize things. Especially when it comes to math. When we finally
figured out the equation it was kind of like I could see it being done on the blocks in my head. Also
I understood that the blocks were a representation of the powers of two.”

The issue is a simple one—do the signs and squiggles mean something in a deep,
satisfying, human sense or do they merely indicate actions to be carried out, as when we say
“sit!” to a dog? This is a linguistic issue, for language is not simply a collection of marks to
which we respond, as if conditioned to do so. It is also a means for expressing the ability of our
brains to see and value connections. For these teachers, algebra in the form of exponential
functions and binomial expansions was no longer a series of marks signifying only that they
should do something (“simply just plugging numbers into a learned equation”, for example).
Algebra and algebraic language now became a means of expressing relationships between
objects and processes—a way of talking about and describing experiences in pattern and
arrangement. The algebraic formulas, such as (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4, developed
meaning via  manifold references.

Early algebra
We need to say something about how we envisage “early algebra”. The relevant student

population consists of students in grades 5 through 8: the last two years of elementary school
through the next two years of schooling. Kaput (2000) and Kaput & Blanton (2000) identify five
main strands of algebra:

1. (Kernel) Algebra as generalizing and formalizing patterns & constraints, especially, but not
exclusively, algebra as generalized arithmetic reasoning and algebra as generalized
quantitative reasoning.

2. (Kernel) Algebra as syntactically-guided manipulation of formalisms.

3. (Topic-strand) Algebra as the study of structures and systems abstracted from computations
and relations.

4. (Topic-strand) Algebra as the study of functions, relations, and joint variation.
5. (Language aspect) algebra as a cluster of (a) modeling and (b) phenomena-controlling

languages.



As a basis for early algebra we consider Kaput’s kernels—algebra as generalizing
patterns, and as manipulation of syntactical forms. To these we add a third element:
interpretation of syntactical forms. Maher and Speiser’s (1997) description of Stephanie’s
interpretation of the binomial expansion of  (a + b)3  in terms of towers of height 3, is a classic
example of what we mean by interpretation of syntactical forms. The Concise Oxford
Dictionary (Oxford University Press) defines “interpret” as:

(a) explain the meaning of (foreign or abstruse words, a dream, etc.).

(b) elucidate or bring out the meaning of (creative work).

(c) act as an interpreter, esp. of foreign languages.

(d) explain or understand (behavior etc.) in a specified manner (interpreted his gesture as
mocking).

The Latin root of “interpret” is “interpretari” — to explain or translate, from “interpres
—pretis”, explainer. Thus, to interpret is to make clear or intelligible. A significant aspect of
interpreting is to reconstruct the semantic meaning of syntax in another form or language: what
might be unintelligible squiggles to us in Sanskrit can be translated to allow us to make sense of
it in our own language. This interpretive aspect of algebra is what so affected our pre-service
elementary teachers: the binomial expansions were not, as they previously thought, meaningless
syntactical manipulations, but in fact had significant interpretations. These interpretations began
to provide meaning for the binomial squiggles, and so helped students to view them, and other
mathematical squiggles and operations, symbolically:

“Symbols have different meanings depending on where they are written.”

“I know that I don’t truly understand a math problem until I understand the algorithm, have correct
computation, and am able to justify my answer.”

 “Before taking this class, I would think mathematics is about only dealing with solv ing the
problems using numbers. When I took this class, I realize it is not just dealing with numbers, but
the actual meaning of all the problems.”

We emphasized the building of connections in the pre-service teachers course. The
express aims of our teaching method were to break up their notions of mathematics as
consisting solely of applying formulas to get an answers, and to provide experiences for them
that increased the flexibility of their thought. Younger, largely pre-pubescent, children will
generally be more flexible in their thinking than adults. In order to foster and maintain flexible
thinking in their students, teachers need to be able to think flexibly themselves. The problems
we used with the pre-service teachers in the first 3 weeks were capable of precise translation
from one to another. Such translations— from towers to grid walks, for example—required the
development of a dictionary. Once that dictionary was in place students could and did rapidly
re-interpret one problem situation in terms of another, gaining insights into both problems in the
process. Algebra requires, however, that we are capable of other, less visually direct,
interpretations. For example the identity:

a2 – b2 = (a – b)(a + b)
is capable of interpretation in a number of ways, including an analogy with factorization of
whole numbers (relatively easy, but not visually imperative), and as a saddle being a product of
two planes (hard, but visually striking). What assists in building meaning for algebraic formulas



is the flexibility to look for multiple interpretations. Often these interpretations are not obvious.
They require study, thought, and the sharing of experiences.

The important criteria for us, therefore, for early algebra, are the following:

1. Generalizing patterns of number, space and arrangement.

2. Manipulating syntactical forms.

3. Interpreting syntactical forms through connections between patterns and syntactic forms.

4. Maintaining and enhancing flexibility of thought through actively seeking interpretations of
syntactical forms.

Early algebra for us is not only a list of topics or general aspects of mathematics: it is also an
attitude to mathematical thinking, one that emphasizes connections and flexibility of
interpretation.

What might help pre-service teachers teach early algebra?
In our experience pre-service elementary teachers need to move from one ball-park to

another. They first need to be brought face-to-face with their unexamined belief that
mathematics is only about applying formulas to find answers. Problems as simple as
enumerating all towers of height 4 and 5, built with one or two colors, are sufficient to set this
process in motion. Our pre-service teachers abandoned what they saw as a “mathematical
approach” to the towers problems and experimented instead:

“When I looked at the towers, I never thought about there being a simpler way than building them
all individually.”

They were brought up sharply by watching a video clip of Stephanie (Maher & Speiser, 1997)
and other grade 4 students arguing why they had enumerated all possible towers:

“They talked through the problem very well and explained it to each other better than I’d be able
to.”

 “… Milin saw the pattern that if the tower is three high, and that there are two blues, three
different possible towers can be made with the red cube in a different position each time. I now
realize that there are several patterns and options to solving this type of problem. Each of us in
class recognized patterns, but not one formula could clearly explain or define our cases.”

They were encouraged to explain individual insights to the entire class, and they valued the
insights of others:

“Through class discussions, I learned that in order to be successful in mathematics, not only do you
need to internalize what you learn, but you also need to think about the most appropriate method to
solve the problem.”

 “Tunnel travel led us to a new discovery…. After analyzing the answer or expansion, James (in
class) recognized the 1, 4, 6, 4, 1 pattern. This is the number sequence from Pascal’s triangle which
maps out the different color combinations from the tower building of 4 high, 2 colors. All of these
exercises relate in the fact that they are algebraic expansions.”

The pre-service teachers also related their own learning to that of the children they hoped to
teach:

“We all struggled to forget our own preconceptions of teaching mathematics by examining the
learning process. But with this struggle came the crucial lessons that are forever cemented in our
minds. Not only do children need to be allowed to learn at their own pace, not only do we as
teachers need to treat each child as an individual, but most importantly, it is up to us as elementary
school teachers to help them understand the importance and reasoning of mathematical



understanding of the root of the concept.”

They read two articles of critical importance: Skemp’s (1976) paper on instrumental and
relational knowledge, and Chapter 3: Generating Representations: Division by Fractions—of
Ma’s (1999) book on teaching elementary mathematics. These readings were important for
them:

“The readings by Richard Skemp and Liping Ma opened my eyes to a new outlook on
mathematics. I have never before thought about where mathematical theories come from.”

“Reading Liping Ma’s work sparked my interest about approaching mathematics from different
angles, an idea I had never considered before. Ma forced me to look at my current knowledge and
understanding of fractions....I realized that I rush into problems often without thinking of the most
appropriate method to solve.”

Finally, they all increased their mathematical content knowledge and basic
mathematical competence. An initial competency test and a final examination, incorporating
many of the problem types of the initial test, were administered to the students. We calculated a
shift statistic, defined, as follows:

shift = (final test% – initial test%)/(100 —initial test%)
We interpret shift as how much a student has moved form their initial test result to their

final test result. Since the shift statistic takes into account a student’s potential for growth, it is
possible that any student can attain the highest shift, 1.00. Shift values ranged from 0.91 (with a
maximum possible of 1.00) to 0.13; in particular, all were positive. The mean shift was 0.56 and
the standard deviation 0.19. A paired 2-tailed t-test on the initial and final test scores showed a
highly significant increase (p < 5 x 10-8).

What is the alternative to training (we refrain from writing “educate”) elementary
teachers who fail to see algebra as having meaning, but who know how to push syntax around?
We suggest these experiences described in this paper are repeatable (that hypothesis is currently
being tested at Harper College) and can be taken as the basis for a set of teaching experiences
that help place pre- service elementary teachers in the right ball-park for teaching early algebra.
In summary, pre-service elementary teachers can become more effective teachers of early
algebra by:

1. Facing their unspoken attitudes to mathematics being all about using formulas to get correct
answers.

2.  Seeing children solve problems that they themselves struggled with.

3. Seeing and hearing other pre-service teacher’s insights into mathematical solution processes
and thoughts.

4.  Being asked to continually and actively seek out connections.

5.  Practising interpretation of syntactical forms in more concrete terms.

6.  Reading and discussing mathematics education literature that speaks to their learning styles
and content knowledge.

7.  Constantly adding to their content knowledge and relating it to previous mathematical
knowledge,

8. Relating their learning to that of their prospective students.



A tall order? We think it is achievable. The 19 students in the Fall, 2000 course for
elementary teachers at Harper College who completed the semester achieved these goals in
varying measure.

“This process of teaching gives the student a true understanding of mathematics. Not only did we
get the answers, we made connections with other ideas. That is a true way of learning mathematics
and what it means. All the learning I accomplished was taught relationally. Math isn’t just about
getting an answer.”

“From the beginning of the semester on, problem solving was the main source of working though
class material. From problem solving came the goal of building connections. Connections to
powers of two and subsets came through the use of the concrete manipulatives to assemble towers.”

“I have learned that mathematics is indeed a series of interrelated ideas. I was challenged to extract
these connections from our daily work while acquiring new skills in mathematics.”
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