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Abstract
Unraveling how brain regions communicate is crucial for understanding how the brain processes external and
internal information. Neuronal oscillations within and across brain regions have been proposed to play a crucial
role in this process. Two main hypotheses have been suggested for routing of information based on oscillations,
namely communication through coherence and gating by inhibition. Here, we propose a framework unifying these
two hypotheses that is based on recent empirical findings. We discuss a theory in which communication between
two regions is established by phase synchronization of oscillations at lower frequencies (�25 Hz), which serve as
temporal reference frame for information carried by high-frequency activity (�40 Hz). Our framework, consistent
with numerous recent empirical findings, posits that cross-frequency interactions are essential for understanding
how large-scale cognitive and perceptual networks operate.
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Introduction
Humans operate in complex environments requiring the

encoding and processing of a constant flow of sensory
information. While the information must be prioritized, the
mechanisms underlying the selective routing of sensory
information remain to be understood. Neuronal oscilla-
tions, in which excitability is modulated by the phase of
the rhythm, have been proposed to play important mech-
anistic roles for routing information, since they can

change the dynamic interactions between brain regions
on a fast time scale (Varela et al., 2001). Two hypotheses
have been proposed for routing of information based on
oscillations (see also Akam and Kullmann, 2014): commu-
nication through coherence (CTC; Fries, 2005, 2009,
2016; Bastos et al., 2015) and gating by inhibition (GBI;
Jensen and Mazaheri, 2010). The CTC framework, at least
in its initial form, mainly focused on gamma activity (�30
Hz) while the GBI is mainly based on alpha oscillations
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Significance Statement

To understand how the brain operates as a network, it is essential to identify the mechanisms supporting
communication between brain regions. Based on recent empirical findings, we propose a mechanism for
selective routing based on cross-frequency coupling between slow oscillations in the alpha and gamma bands.
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(8–13 Hz). These two frameworks are not mutually exclu-
sive, and the aim of this paper is to unify them.

The CTC and GBI Frameworks
Consider two pools of neurons, A and B, that are con-

nected to a third pool, C. As an example, this could be two
subpopulations of neurons representing different spatial
locations within V1 and project to a common subpopula-
tion of V4 neurons that represent both spatial locations.
When spatial attention is directed to the receptive fields
(RFs) of neurons in pool A, the routing mechanism should
favor the communication between A and C while prevent-
ing communication between B and C (Fig. 1a). How is the
functional connectivity between A and C, but not B and C,
established?

According to the CTC hypothesis, interregional com-
munication is established when the oscillatory activity
between these neuronal pools is coherent, i.e., they os-
cillate at the same frequency with a stable phase differ-
ence (Fries, 2005, 2009). This would allow the excitable
phase of neurons in C to coincide with synaptic input from
neurons in A. To block communication (the B-to-C path-
way), the synaptic input from neurons in B arrives at the
nonexcited phase of the neuron in C (Fig. 1b). Thus if B
and C are not oscillating in phase synchrony, the com-
munication is reduced. Brain regions have indeed been
shown to phase-synchronize in the gamma band when
attention is allocated (e.g., Womelsdorf et al., 2006, 2007;
Bosman et al., 2012). How is the phase synchrony be-
tween regions A and C established? Fries and colleagues
(Fries, 2009; Bastos et al., 2015) proposed that it is es-
tablished by oscillations in neurons of pool A entraining
neurons in C at the gamma frequency. This mechanism
also implies that the phase synchronization among the

neurons in A is stronger and potentially oscillates at a
faster gamma frequency than in B (Fries, 2015). As a
consequence, the neurons in C are entrained by A rather
than B, thus dynamically strengthening the functional
connectivity. This effect results in a mechanism that in-
creases the impact of A on C while reducing the impact of
B on C (Fries, 2009, 2015). It is not completely clear how
B and C achieve asynchrony (Akam and Kullmann, 2014).
As demonstrated in Bosman et al. (2012), coherence be-
tween B and C is reduced compared with coherence
between A and C. The reduced coherence could be
achieved by B and C fluctuating independently in the
same frequency band, or by B and C oscillating at differ-
ent frequencies (as shown in Bosman et al. [2012]). Yet, a
possibility is that they oscillate at the same frequency but
with a fixed phase difference (e.g., antiphase); however,
this possibility seems at odds with the reduced coherence
in the unattended pathway (Bosman et al., 2012).

According to the GBI hypothesis (Fig. 1c), the informa-
tion flow between regions is established by actively inhib-
iting the pathway not required for the task. It has been
proposed that alpha activity reflects regional-specific in-
hibition (Klimesch et al., 2007; Jensen and Mazaheri 2010;
Foxe and Snyder 2011; Jensen et al., 2012). Alpha activity
is associated with pulses of inhibition, i.e., the larger the
alpha activity, the stronger the bouts of inhibition. This is
consistent with findings from many experiments showing
that alpha activity is high over task-irrelevant areas (Hae-
gens et al., 2010; Snyder and Foxe 2010; Bonnefond and
Jensen 2012; Capilla et al., 2014 but see Mo et al., 2011)
or task-irrelevant groups of neurons within a brain area
(van Kerkoerle et al., 2014). Furthermore, this increase has
been shown to predict behavioral performance (Foxe et al.,

Figure 1. The communication through coherence (CTC) and gating through inhibition (GBI) hypotheses. a, Two pools of neurons (A
and B; e.g., in V1) are connected to a pool of neurons (C; e.g., V4). In this example, pool A communicates with C (solid line) while
functional connectivity between B and C is suppressed (dashed line). b, CTC. The waveforms represent oscillatory population activity
(as measured in the LFP) in the three regions, whereas the small vertical lines represent spiking activity. The phase of the oscillatory
activity modulates the excitability and thus spike timing. It is the phase relationship between the regions that determines the routing.
The neurons in A and C oscillate in phase, whereas the neurons in B do not oscillate in phase with C. It has been proposed that this
mechanism is implemented by gamma band oscillations (�30 Hz; Fries 2005) c, GBI. The flow of information is controlled by an
increase of alpha-band oscillations (�10 Hz) which inhibits firing in pool B, and a decrease in alpha oscillations of neurons in A and
C, allowing communication by release from inhibition (Jensen and Mazaheri 2010). It is the magnitude of the pulses of inhibition and
thus the alpha power that controls the routing.
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1998; Thut et al., 2006; Meeuwissen et al., 2010; Haegens
et al., 2011, 2012; Händel et al., 2011; Bonnefond and
Jensen 2012, 2013; Payne et al., 2013; Myers et al., 2014).
Considering Fig. 1a, gating would thus be reflected by alpha
power increase in B and a decrease of alpha power in A and
C. Furthermore, the alpha power decrease in A and C would
allow for increased gamma power in these regions that
could be involved in transmitting information. It is important
to note that, in the latest version of the CTC framework
(Fries, 2015), Fries also highlighted the potential role of alpha
oscillations, in opposition to gamma oscillations, in prevent-
ing effective communication of local neuronal representa-
tions but also in holding these representations “on-stock” so
that they can be flexibly used when needed.

Although both of these frameworks have strong explan-
atory value, they account for different findings in the
literature. In particular, CTC in its current formulation does
not address the issue of diverging routes where, e.g., one
region is connected to two downstream regions. In this
case, the entrainment by gamma oscillations does not
provide a routing mechanism (but see Bastos et al., 2015;
Fries, 2015). Several other challenges have been put for-
ward to the CTC framework. One criticism is based on the
finding that the gamma frequency is modulated by stim-
ulus features such as contrast (Ray and Maunsell, 2010;
Hadjipapas et al., 2015). This implies that different con-
trast levels that are part of a larger scene (e.g., a single
object) are communicated at different frequencies, which
might pose a problem for integrating this information in
the converging visual hierarchy (Ray and Maunsell, 2010).
However, Fries (2015) mentioned that the stimulus sa-
lience and level of attention to the subparts of a single
object are often similar and thus result in similar gamma
frequencies facilitating the integration in higher levels of
hierarchy. However, a second criticism is based on an
optogenic study that manipulated spike timing in the
gamma and beta bands. Manipulating the temporal coor-
dination of spiking activity did not influence behavior or
transmission of spikes (Histed and Maunsell, 2014). Third,
there is a debate as to whether the high-frequency activity
generated by natural stimuli is dominated by band-limited
oscillations in the gamma frequency range or nonoscilla-
tory changes over a broad range of frequencies (Hermes
et al., 2014b; see “Existing evidence and predictions for
communication by nested oscillations”). Finally, it has
been argued based on results from a modeling study that,
while entrainment might occur, communication is estab-
lished already before coherence (Rolls et al., 2012).

Also the GTI framework is associated with several lim-
itations. First, the phase modulation of neuronal firing by
the alpha-band activity is not made explicit (Jensen et al.,
2012, 2014). Second, GTI does not elaborate on the role
of gamma-band activity for interareal communication, nor
does it consider interregional phase synchrony in the
alpha band as also being involved in interregional com-
munication. Third, the strong emphasis on the alpha-band
activity seems at odds with many nonhuman primate
studies on attention in which modulations by alpha oscil-
lations have only been recently reported, mainly via the

use of laminar recordings (Haegens et al., 2011, 2015;
Maier et al., 2011; Spaak et al., 2012).

At different levels of the cortical hierarchy, feedforward
and feedback information needs be integrated (see Lar-
kum, 2013 for one proposal). The GTI and CTC proposals
are not fully explicit on the integration of feedforward and
feedback at the microcircuit level (but see Lee et al., 2013
cited in Bastos et al., 2015 and Fries, 2015). Therefore it is
crucial that these frameworks are unified and extended
(e.g., by incorporating the phase-coding scheme), so that
empirical studies can be specifically designed to test for
the predictions derived from such a unified framework.

A Unified Framework Based on Nested
Oscillations

We here propose a unified framework which is based
on the coupling of slow and fast oscillations (see also
Lakatos et al., 2005; Schroeder and Lakatos, 2009; Florin
and Baillet, 2015; Hyafil et al., 2015). In this framework
(Fig. 2), we suggest that the information flow is estab-
lished by neuronal synchronization at lower-frequencies in
the theta (4–7 Hz), alpha (8–13 Hz), and beta (14–25 Hz)
bands rather than in the gamma band. We will first de-
velop the framework around the alpha band in the visual
system (see “Communication based on nested oscilla-
tions could be a general mechanism throughout the brain”
for a discussion about the role of beta oscillations in the
visual system). This is motivated by the fact that there are
a numerous empirical reports on alpha oscillations in the
visual system in the context of experiments in which
routing is manipulated using attention task. We will then
discuss how the framework could generalize to other
regions.

We consider here that alpha oscillations are associated
with pulses of inhibition every �100 ms and as such can
suppress neuronal activity locally as well as support in-
terareal communication, through phase synchronization
and release of inhibition (see also “Control of alpha oscil-
lations in relation to cortical layers”). It is important to note
that these mechanisms do not exclude complementary
roles of alpha oscillations in other processes such as
transmitting prior evidence to sensory areas (Sherman
et al., 2016) or sampling (Busch and VanRullen, 2010;
Song et al., 2014; VanRullen, 2016; see also “The role of
saccades and slower rythms”).

We propose that, when neurons in pool A and C com-
municate, they oscillate coherently in the alpha band in
conjunction with a decrease in alpha power. The decrease
in alpha power creates longer windows of excitability in
each cycle, i.e., longer duty-cycles (Jensen and Mazaheri,
2010), allowing for more information to be transferred
between the synchronized regions. The blocking of com-
munication between pool B and C is ensured by two
complementary mechanisms: asynchrony between B and
C preventing communication and stronger alpha power in
B resulting in shorter duty-cycles. Asynchrony could
mean that the regions are oscillating in antisynchrony,
which could imply that they are still coherent. Another
possibility is that they are not synchronized but fluctuating
at different phases, albeit the frequencies are within the
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same range. In the latter case, the prevention of the
transfer of information would be mainly implemented via
an increase of alpha inhibition. Another possibility would
be that pools B and C fluctuate at different frequencies.

Gamma oscillations are expected to be nested within
alpha oscillations, i.e., they should occur only during the
excitability phase of alpha oscillations. In pool A, the low
magnitude of alpha oscillations allows for longer-duty
cycles, i.e., longer time windows for the gamma activity
during the excitability phase of the alpha cycle. As the
excitable phase of the alpha oscillations will be aligned
between the two relevant pools of neurons, gamma ac-
tivity in A will be able to impact the neurons in C. This fast
neuronal synchronization will have a strong impact on C
owing to synaptic summation within the time window of a
gamma cycle (Salinas and Sejnowski, 2001).

As a consequence, gamma oscillations in A and C will
be correlated and possibly coherent. In pool B, the high
magnitude of alpha oscillations will reduce the duty cycle,
i.e., the gamma oscillations’ duration. In addition, the
asynchrony of alpha oscillations in B and C will prevent
gamma activity in B to drive cells in C. In short, a coupling
between the phase of the alpha oscillations and gamma
power could reflect the temporal coordination of informa-
tion between regions.

The significance of alpha synchronization, specifically
in a sensori-fronto-parietal network, in sensory process-
ing was also emphasized by Palva and Palva (2007, 2011)
and more recently by Siebenhühner et al. (2016). They
proposed that cross-frequency phase coupling between
alpha, beta, and gamma oscillations would allow the se-
lection and maintenance of object representations during
perception and working memory. They more specifically
proposed that cross-frequency phase synchrony between
the fronto-parietal network and the local gamma oscilla-

tions in sensory regions might underlie the incorporation
of stimulus representations into the focus of attention. The
current framework shares many similarities with their in-
spiring framework. The framework developed here is, how-
ever, very specific on how the modulation of (1) the local
amplitude of alpha oscillations, (2) the interareal phase-
alignment, and (3) the local interaction between phase alpha
oscillations and the power (not the phase) of feedforward
gamma oscillations is involved in the selective routing of
information in cognitive networks. Furthermore, the current
framework incorporates the phase coding scheme and
discusses implementation of the model within the cor-
tical layers. Finally, we attempt to generalize the model by
considering that other slow rhythms could implement the
specific interareal communication in other networks.

Existing Evidence and Predictions for
Communication by Nested Oscillations

Testing the proposed framework would require record-
ings from different regions in humans or nonhuman pri-
mates in the context of a task as, for instance, done by
Saalmann et al. (2012). In that study, monkeys were cued
to covertly attend to one of six locations after which a
target array appeared. In the delay between cue and
target, the allocation of covert attention was associated
with an increase in coherence between V4 and temporo-
occipital areas. Moreover, gamma coherence between V4
and TEO phase-locked to the alpha oscillations was ob-
served. These results support our framework by demon-
strating that alpha-band coherence is in control of the
communication. While these findings provide first support
for our framework, we will outline set of more specific
predictions applied to the visual system in the following.

Figure 2. The new framework. The synchronization in the alpha-band establishes the functional connection between A and C. This
allows for representational specific neuronal firing reflected by the gamma band activity to flow to region C. The blocking of
communication between B and C is achieved by high alpha power in B and an asynchrony between B and C. Therefore both
modulations in alpha-band power, as in gating by inhibition, and phase synchronization between the regions, as in CTC, are
determining the routing of information between regions. Note that phase synchronization is assumed in the alpha band and the
information transfer is reflect by gamma-band activity.
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Prediction 1: Alpha oscillations are a consequence
of internal control, while gamma activity reflects
feedforward communication; moreover, gamma
activity is phase-locked to the alpha oscillations

The framework predicts that alpha oscillations set up
the communication between relevant areas in a given task
context. This idea implies that the phase and power of the
alpha oscillations are under internal control. The gamma
oscillations phase-modulated by the alpha oscillations will
then reflect the information to be transferred in a feedfor-
ward manner.

Several recent articles have provided evidence in favor
of slow frequency activity (alpha and beta oscillations)
reflecting feedback control and gamma activity reflecting
feedforward processing within the visual hierarchy (von
Stein et al., 2000; van Kerkoerle et al., 2014; Bastos et al.,
2015; Jensen et al., 2015; Michalareas et al., 2016; see
also Arnal et al., 2011). Using Granger causality measures,
they showed that alpha/beta oscillations in higher-order
visual regions impacted lower-order regions during an
attention task, while the reverse was observed for gamma
oscillations. van Kerkoerle et al. (2014) further demon-
strated that electrical stimulation of V1 induced an in-
crease of gamma activity in V4, while stimulating V4
induced an increase of alpha oscillations in V1. The pre-
diction regarding the control of alpha oscillations goes
beyond feedback control, and we elaborate on many
possibilities on where alpha is generated in “Control of
alpha oscillations in relation to cortical layers.” It is impor-
tant to note that gamma oscillations also can reflect feed-
back communication (Bastos et al., 2015; Michalareas
et al., 2016), possibly controlled by alpha oscillations.

It has recently been shown that alpha and gamma
activity interacts: gamma activity is phase-coupled to
alpha oscillations during rest and during stimulus antici-
pation and processing in both monkeys and humans
(Voytek et al., 2010; Spaak et al., 2012; Khan et al., 2013;
Berman et al., 2014; Bonnefond and Jensen, 2015; Florin
and Baillet, 2015). Two studies have demonstrated that
the higher the alpha activity, the lower the gamma activity
at a specific phase of alpha oscillations during rest in
monkeys and during the retention period of a working
memory task in humans. This is in line with alpha activity
being associated with pulses of inhibition every �100 ms
(Spaak et al., 2012; Bonnefond and Jensen, 2015). We
propose that gamma oscillations, nested within slow os-
cillations, serve to segment neuronal representations in
time. According to this framework, a neuronal represen-
tation is constituted by a distributed firing pattern con-
strained to a given gamma cycle (Lisman and Idiart, 1995).
This allows for several items to be multiplexed over a
gamma cycle (see “Exchange of phase encoded informa-
tion”).

However, there is currently a debate about whether
gamma activity reflects oscillations or whether it is a
broadband phenomenon devoid of rhythmicity, in par-
ticular for �80 Hz oscillations (Lachaux et al., 2005;
Brunet et al., 2014; Hermes et al., 2014b; Buzsáki and
Schomburg 2015; Ray and Maunsell 2015). The broad-
band activity (often called high-gamma activity or even

epsilon when �80 Hz) is likely to reflect a hash of neuronal
spiking rather than oscillations. However, it is possible
that the 30- to 150-Hz activity is composed of both true
oscillatory gamma activity (Brunet et al., 2014) and broad-
band multiunit activity (Manning et al., 2009; Ray and
Maunsell, 2011). Possibly, the 80- to 150 Hz activity re-
flects the firing of neural populations, which is phase-
locked to gamma oscillations at lower frequencies (30–80
Hz), as has been observed in the rat hippocampus (Bel-
luscio et al., 2012).

This is an important issue, as the CTC framework artic-
ulates a mechanistic role for the phase of gamma oscil-
lations such that the information can be transferred via
interareal synchrony. The nature of activities observed in
different gamma frequencies needs therefore to be further
investigated using intracranial animal or human data.

In the present framework, the neuronal representation
could contain both rhythmical activity (cf. e.g., “Exchange
of phase encoded information”) or broadband activity
devoid of rhythmicity, as the selectivity of the communi-
cation is subserved by an interareal synchronization at
lower frequencies, i.e., theta, alpha, or beta.

Moreover, as pointed out above, the modulation of
gamma frequency by different visual features (e.g., con-
trast) is difficult to reconcile with the CTC framework. This
would result in different parts of an object being commu-
nicated at different frequencies in the visual hierarchy,
preventing integration (but see Fries, 2015). In the present
framework, the gamma activity generated by the different
features of a stimulus would be represented at different
phases of a single alpha cycle in a multiplexing manner,
which then allows for integration. In future work, it will be
interesting to investigate whether alpha oscillations in-
deed serve to group and integrate sensory input.

Prediction 2: Alpha magnitude and interareal
synchrony control the transfer of information carried
by gamma oscillations

The framework assumes that alpha-band phase syn-
chrony between A and C (see Fig. 2) allows stimulus-
driven gamma oscillations, modulated by the phase of the
alpha oscillations to be transferred from A to C. Specifically,
we hypothesize that the synchrony of alpha oscillations
between relevant areas predicts interareal correlation or co-
herence of gamma oscillations.

While the inter-areal coherence observed in the alpha
and gamma bands during several cognitive processes in
rats, monkeys, and humans (Womelsdorf et al., 2006;
Pollok et al., 2007; Bastos et al., 2012, 2015; Grothe et al.,
2012; Muller and Weisz, 2012; Popov et al., 2013; van
Kerkoerle et al., 2014) supports the notion that phase
synchronization reflects information exchange, the role of
cross-frequency interactions needs to be explored in
greater detail.

Our framework also predicts that the oscillatory dynam-
ics can prevent the transfer of information from region B
to C. This is achieved by strong alpha oscillations in B
which are in asynchrony or antisynchrony with oscillations
in C. This results in the hypotheses that (i) alpha power is
strong in task-irrelevant areas (i.e., B) and (ii) there is a
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change in the phase relation between task-irrelevant (B)
and downstream (C) regions. This might be reflected by
antisynchrony or a decrease in synchrony (possibly due to
a change in frequency in one of the pool). The power
increase and synchrony decrease will be associated with
less interareal power-correlation or coherence in the
gamma band.

There is strong support for alpha magnitude increasing
in task-irrelevant regions during attention and memory
tasks (Foxe et al., 1998; Worden et al., 2000; Thut et al.,
2006; Snyder and Foxe 2010; Banerjee et al., 2011; Bon-
nefond and Jensen, 2012; Payne et al., 2013). For in-
stance, alpha oscillations have been shown to increase in
the early visual regions in anticipation of a distractor in
working memory tasks (Bonnefond and Jensen, 2012;
Payne et al., 2013). With respect to the interregional phase
relationship, antisynchrony (�180° phase difference) be-
tween parietal and frontal areas during an oculomotor,
delayed-match-to-sample task has been reported (Dotson
et al., 2014); however, there are also findings demonstrat-
ing a decrease in synchronization between visual regions
when spatial attention is directed away (e.g., Saalmann
et al., 2012; Bastos et al., 2015).

Future investigations are required to identify when and
where the mechanisms for preventing information transfer
are at play.

Prediction 3: To allow communication between two
specific pools of neurons, alpha oscillations must be
modulated locally on a fine spatial scale

The framework proposes that alpha oscillations are
differently modulated in neuronal pools A and B (see Fig.
1c). This should be the case even if the stimuli processed
by A and B are close to each other in retinotopic space.
This results in the hypothesis that alpha oscillations must
be modulated locally.

However, while it is often assumed that alpha oscilla-
tions in the visual system are modulated more globally
(Thut et al., 2006), recent monkey and human Electrocor-
ticography (EcoG) data provide promising evidence that
alpha oscillations can be modulated locally even at the
receptive field level. More precisely, these studies have
shown that alpha oscillations increased (compared with
baseline) in the surround area of the stimulated/attended
receptive field in V1 (Harvey et al., 2013; van Kerkoerle
et al., 2014). This does not preclude the need for alpha
oscillations to be modulated more globally in the visual
system in some situations, such as during working mem-
ory maintenance to protect against distractors (Bonne-
fond and Jensen, 2012) or during alertness (Sadaghiani
and Kleinschmidt, 2016).

Communication Based on Nested
Oscillations Could Be a General
Mechanism throughout the Brain

Thus far, we have focused on the coordinating role of
alpha oscillations in the visual network. Further modu-
lation of alpha activity related to functional inhibition
has been reported in the language network in humans
(Wang et al., 2012), in prefrontal regions in the monkey

(Buschman et al., 2012; Engel, 2012; Jensen and Bonne-
fond, 2013; Welberg 2013), and even in the hippocampus
(Staresina et al., 2016; but see below for a discussion
regarding the hippocampus). However, similar functional
roles may be played by oscillations at other frequencies,
which have been shown to be prominent in other brain
regions. For instance, there is strong evidence for the
coupling in the theta band between the hippocampus and
other regions such as prefrontal cortex, amygdala, and
striatum (e.g., Seidenbecher et al., 2003; Benchenane
et al., 2010; Kaplan et al., 2014; Staudigl and Hanslmayr,
2013; Backus et al., 2016). Importantly, when theta and
alpha activity are observed in intracranial recordings
across species, gamma power is typically found to be
coupled to the phase of these oscillations (Canolty et al.,
2006; Colgin et al., 2009; Canolty and Knight, 2010; Bel-
luscio et al., 2012; Hermes et al., 2014a; Jensen and
Colgin, 2007; Voytek et al., 2010; Spaak et al., 2012).
Thus, theta oscillations may play the same functional role
as alpha oscillations in coordinating neuronal processing.
Several studies also points to theta being inhibitory
(Mehta et al., 2002). Given that theta oscillations in the
monkey hippocampus have been found to overlap in
frequency with alpha oscillations (Jutras et al., 2013), it
remains an exciting possibility that the visual cortex and
the hippocampus communicate via synchronization by
means of these oscillations (Fell et al., 2011). However, it
is debated whether the human theta rhythm is at �3 Hz or
in a higher band (Watrous et al., 2013). In case it would be
at 3Hz, the interactions between the visual cortex and
hippocampus could then occur via cross-frequency cou-
pling (Gu et al., 2015). The involvement of theta oscilla-
tions for coordinating the interactions between the
striatum and the cortex during motor behavior in rats has
been revealed by von Nicolai et al. (2014). In line with the
current model, they further showed that the coordination
of fast oscillations occurred via the coherent coupling of
theta phase and high-frequency amplitude.

Beta-band oscillations might also play a role for coor-
dinating the information flow by means of cross-fre-
quency coupling, in e.g., the motor network (van Wijk
et al., 2016). Moreover, some studies have reported at-
tentional modulation of feedback-related beta oscillations
in the visual system (e.g., Bastos et al., 2015; Kornblith
et al., 2016). It remains to be explored what the functional
differences between alpha and beta oscillations are. In
particular, it will be important to determine whether the
beta activity in some cases results from nonlinear addition
of different alpha generators in different cortical layers
(Jones et al., 2009). In line with this idea, laminar record-
ings have only revealed modulation of alpha oscillations in
the visual system during attentional tasks (e.g., Bollimunta
et al., 2011; van Kerkoerle et al., 2014), while EcoG re-
cordings have revealed modulation of beta oscillations
(Bastos et al., 2015).

Exchange of Phase-Encoded Information
Extensive work in the rat hippocampus has demon-

strated that different information is encoded at different

Theory/New Concepts 6 of 14

March/April 2017, 4(2) e0153-16.2017 eNeuro.org



phases of the theta cycle. In particular, when a rat tra-
verses a place field, the phase of firing of the respective
place cell advances with respect to theta phase (O’Keefe
and Recce, 1993). Several mechanisms have been pro-
posed for how such a phase-organized code might
emerge (Jensen and Lisman, 1996; Burgess and O’Keefe,
2011; Lisman and Jensen, 2013) . In analogy, Jensen et al.
(2014) recently proposed a model for how visual informa-
tion might be encoded along the phase of the alpha cycle.
In the model, competing visual representations are repre-
sented at different phase of the alpha cycle to resolve the
bottleneck problem in the visual system. Due to the con-
vergence in the hierarchy of the visual ventral stream, two
stimuli (e.g., faces) might partly share the same neuronal
representation in higher-order visual areas. Jensen et al.
proposed that the processing of these two stimuli is
segmented in time by being represented at different
phases of the alpha cycle. The stronger the excitability of
a given representation, the earlier it overcomes the inhi-
bition as it ramps down within an alpha cycle. This creates
a temporal code organized according to excitability (Jen-
sen et al., 2014). As proposed for the hippocampus (Jen-
sen, 2001; Colgin, 2011), the exchange of phase-encoded
information can be achieved by phase-synchronizing the
communicating networks (see Fig. 3).

Consider two representations associated with neurons
in pool A and B. The excitability is stronger for A than for
B (Fig. 3a). Jensen et al. (2014) proposed that the neuronal
firing associated with each stimulus occurs at different
phases of the alpha cycle. Moreover, A, B, and C would
be synchronized in the alpha band and, as a conse-
quence, this temporal organization would then be trans-
mitted to C (Fig. 3b). A possibility Jensen et al. (2014) did
not discuss is that the magnitude of the alpha oscillations
in the two pools determines which stimulus is processed

first (Fig. 3c). In particular, alpha power will be lower in
pool A than in pool B, if the stimulus processed by the
former is more relevant/salient. As a consequence, the gamma
burst will occur earlier in A than in B due to the stronger
alpha inhibition in the latter. Importantly, alpha oscilla-
tions are still expected to be synchronous between the
three pools. To date, there is little empirical evidence
demonstrating that alpha phase organizes neuronal cod-
ing. There is work in the �, theta, and beta bands dem-
onstrating phase-coding (Kayser et al., 2009; Voytek
et al., 2015; Watrous et al., 2015). We call for future
studies in which a phase-specific code is investigated in
the visual system in the alpha band.

Control of Alpha Oscillations in Relation
to Cortical Layers

The framework we propose assumes that alpha oscil-
lations are internally controlled in terms of phase and
magnitude. We here discuss the mechanisms involved in
the control. The control serves to phase-synchronize the
oscillations between different regions and modulate the
degree of pulsed inhibition to allocate computational re-
sources. A number of studies have shown that alpha
magnitude and phase can be modulated in anticipation of
relevant or irrelevant stimuli (Foxe et al., 1998; Thut et al.,
2006; Foxe and Snyder, 2011; Bonnefond and Jensen,
2012; Samaha et al., 2015; but see van Diepen et al.,
2015), indicating that alpha oscillatory activity is indeed
under internal control. In this section, we discuss two
complementary mechanisms for this control, namely that
alpha oscillations are controlled by neocortical feedback
connections or by the thalamus. We will discuss this in the
context of layer-specific computations.

Figure 3. Exchange of phase coded information. a, Two stimuli processed by two pools of neurons A and B, e.g., in V1. The pools
both project to a pool of neurons C downstream in the hierarchy, e.g., in V4. Because of this bottleneck in the visual system, it is
important that neurons coding for A and B in V1 are not activated simultaneously. For the information related to the two stimuli to be
transferred from V1 to V4, we propose two mechanisms. b, A single alpha generator in V1 controls for the timing of activation of
neurons in pool A and B as reflected in the gamma band. The activation of the most excitable neurons, i.e., cells in pool A, overcomes
the pulse of inhibition early in the alpha cycle followed by neurons in pool B (see Jensen et al. 2014 for details). The temporal
organization is then transmitted to the pool of neurons in C. c, Another possibility is that the magnitude of the alpha oscillations is
modulated locally and is lower for one of the representations compared with the other. Because the alpha inhibition is lower for A,
the respective neurons fire earlier than B. This temporal organization is then transmitted to C.
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Feedback in Relation to Cortical Layers and
Canonical Microcircuits

Interestingly, the pools of neurons involved in the feed-
forward and feedback pathways are segregated in differ-
ent cortical layers in the visual system (Markov et al.,
2014). The cortical layers involved in feedforward and
feedback differ according to the hierarchical distance
between the connected brain regions (Barone et al., 2000;
Markov et al., 2011, 2014). In the case of the connections
between V1 and V4, the feedforward pathway originates
in supragranular layers (L3B) in V1 and target granular
layers (L4) and L3B in V4. The feedback pathway from V4
originates in the supragranular layers L3A and infragranu-
lar layers L6 and target supragranular layers L1–2/3A and
infragranular layer L6, respectively, in V1 (Fig. 4). Interest-
ingly, alpha activity has been observed mainly in both the
supragranular and infragranular layers of a given area,
with a stronger power in the latter (but see Haegens et al.,
2015), while gamma activity has been shown to be prom-
inent in the granular and supragranular layers (Bollimunta
et al., 2008, 2011; Buffalo et al., 2011; Maier et al., 2011;
Spaak et al., 2012; van Kerkoerle et al., 2014; Dougherty
et al., 2015).

According to our model, supragranular and/or infra-
granular alpha oscillations should exercise an inhibitory
phasic influence on the granular and/or supragranular
gamma magnitude (see Spaak et al., 2012; Fig. 4b).

As shown in Fig. 4, the feedback is diverging when
originating in V4 and projecting back to several V1 re-
gions. This feedback needs to be selective, e.g., deter-
mining the alpha-phase synchronization from C to A, but
not C to B. Moreover, local alpha magnitude in A and B
should be distinct, with a higher alpha magnitude in B. We
discuss below the putative role of different neocortical
and subcortical regions in modulating the local change in
alpha magnitude and the alpha synchronization between
communicating areas.

It remains to be better understood how alpha and
gamma oscillations are generated from a physiologic per-
spective and how their interaction is implemented at the
level of the microcircuit. The mechanisms generating
gamma oscillations have been extensively reviewed in
Buzsáki and Wang (2012), but less is known about alpha
oscillations. Alpha oscillations are thought to involve in-
hibitory neurons to set up pulses of inhibition every �100

Figure 4. Converging feed-forward and diverging feedback pathways. a, Pools of neurons A and B converge on a pool of neurons
in C. Black arrows represent the converging feedforward pathway and the gray arrows represent the diverging feedback pathway. b,
Example in which two cortical columns in V1 (A and B) are connected to a column in V4 (C). Three layers are represented, the
supragranular, the granular, and the infragranular. Dark and light grays represented in the layers are involved in the feedforward and
feedback pathways, respectively. The layers associated with each pathway are inspired by Markov et al. (2014). The feedforward
connections from the pulvinar are also indicated (purple arrows). c, gamma and alpha oscillations have been shown to be prominent
in the granular/supragranular and infragranular/supragranular layers, respectively.
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ms. Somatostatin cells engaged via lateral connections
(Zhang et al., 2014) or trans-laminar fast-spiking neurons
engaged by layer 6 neurons (Olsen et al., 2012; Bortone
et al., 2014) or even layer 5 pyramidal cells (Buchanan
et al., 2012) are strong candidates, but further research is
needed to evaluate their behavior during alpha oscilla-
tions. Layer 1 interneurons might also be involved as
dendrites from layers 2/3A, 3B, and 5 reach this layer
(Markov et al., 2014). Also, the role of lateral connections
(Wang et al., 2000; Angelucci and Bullier, 2003; Tamura
et al., 2004) and the role of the thalamus (da Silva et al.,
1973; Lorincz et al., 2009; Vijayan and Kopell 2012) need
to be investigated.

The examples considered here concern the visual sys-
tem. It has been shown, however, that the laminar orga-
nization (e.g., cortical types can be granular, agranular, or
dysgranular) and the connectivity between areas varies
across networks (see e.g., Rempel-Clower and Barbas,
2000). It will be important to consider these anatomic, but
also functional, heterogeneities to further determine
whether the information is communicated by similar prin-
ciples in these different networks.

Regions Involved in the Control of Alpha
Several studies have investigated the influences of the

fronto-parietal network, i.e., the frontal eye field (FEF) and
the posterior parietal cortex, on activity of posterior re-
gions (Szczepanski et al., 2010; Noudoost and Moore,
2011; Squire et al., 2013). The fronto-parietal network
includes a number of areas that are retinotopically orga-
nized, and it is engaged during spatial attention, saccade
planning, and other cognitive and perceptual operations
(Saygin and Sereno, 2008; Silver and Kastner, 2009). The
fronto-parietal network is directly and indirectly (through
the pulvinar) connected to visual regions. The FEF and
parietal cortex have both been shown to be associated
with the control of alpha activity in posterior regions in
humans (Capotosto et al., 2009; Marshall et al., 2015b;
Sauseng et al., 2011) potentially via the superior longitu-
dinal fasciculus (Marshall et al., 2015a). However, the role
of the fronto-parietal network for controlling alpha phase
remains to be elucidated (but see Sauseng et al., 2005).

Recently, Sadaghiani et al. (2016) further proposed that
different cortical networks were involved in controlling
alpha oscillations. More specifically, they proposed that a
network including the dorsolateral prefrontal cortex, the
rostrolateral prefrontal cortex, the posterior inferior pari-
etal lobe, the paracingulate gyrus, and the mid-cingulate
gyrus was involved in controlling long-range alpha-phase
locking associated with adaptive control, while the dorsal
attention network (including intraparietal sulci, frontal eye
fields, and middle temporal complex) was associated with
controlling the (dis-) engagement of regions via the con-
trol of local alpha amplitude and as such with implement-
ing selective attention.

Subcortical regions might also play a key role in modulat-
ing alpha activity. For instance, the pulvinar is in a particularly
well-suited anatomic position for controlling the communi-
cation between posterior neocortical areas, since it is
connected to a wide range of areas in the visual hierarchy.

More specifically, it is connected to neighboring cortical
regions that are themselves directly connected to each
other (Saalmann and Kastner, 2011; Saalmann et al.,
2012). Here, we consider two ways in which the pulvinar
might influence the synchronization in the alpha band
between brain regions. (1) The pulvinar might modulate
the feedback originating from higher-order regions as it
targets layers 1–3) of the lower-order area. In line with this
idea, Purushothaman et al., (2012) showed that electrical
stimulation of pulvinar neurons in anesthetized prosimian
primates resulted in boosting the firing of V1 neurons
when stimuli were presented in the V1 neurons’ receptive
fields, while it suppressed the neuronal activity when the
stimuli were presented outside the receptive field. As
such, the stimulation mimicked the effects of attention.
Following the schema shown in Fig. 4, we suggest that the
pulvinar serves to synchronize C and A by increasing the
impact of the feedback connections arriving in L1–3. Like-
wise, the pulvinar might decrease the activity in B, reduc-
ing the synchrony between C and B. It is further possible
that the pulvinar increases the magnitude of alpha oscil-
lations in B. (2) The pulvinar might directly control the
synchronization of alpha activity between two areas, as it
is connected to supragranular layers (L1–3) of the lower-
order area (e.g., V1) and granular layer (L4) of the higher-
order area (e.g., V4; Saalmann and Kastner, 2011).
Although alpha activity is thought to be particularly high in
supragranular and infragranular layers, several papers
have also revealed the presence of an alpha generator in
L4 (Bollimunta et al., 2008, 2011; Haegens et al., 2015). It
is thus possible that the pulvinar allows the synchroniza-
tion between L1–3 in a lower-order region and L4, which
receives the feedforward activity, in a higher-order region.
In line with this idea, Saalmann et al. (2012) demonstrated,
using a measure of Granger causality, that the pulvinar
was driving the alpha-band synchronization between V4
and TEO when attention was allocated at the receptive
field of the regions recorded. However, they did not ob-
serve an increase of the amplitude of alpha oscillations in
these cortical areas when attention was directed away
from it (Kastner, unpublished observations). Such ampli-
tude change might occur only in V1. Therefore, they could
not investigate the influence of the pulvinar on a change in
alpha amplitude as suggested in the paragraph above.
Interestingly, the pulvinar is also known to be connected
to frontal areas (Saalmann and Kastner, 2011). It is there-
fore possible that part of the influence of frontal areas on
the sensory cortex is mediated by the pulvinar. In sum-
mary, the mechanisms underlying the influences of the
pulvinar on alpha oscillations in the different cortical areas
remain to be understood. In addition to the pulvinar,
interactions between the prefrontal cortex, the thalamic
reticular nucleus (TRN), and the lateral geniculate nucleus
might also be involved in setting up alpha-power in-
creases in early visual regions. Recent articles have
shown that the prefrontal cortex directly influences TRN
activity, thereby controlling thalamic sensory gain during
attention (Halassa et al., 2011; Wimmer et al., 2015).

Further investigations, such as exploring the task-
specific laminar profiles of alpha oscillations, will be nec-
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essary to determine how the feedback activity from higher
visual regions and the different cortical and subcortical
regions influence the power and the phase of alpha ac-
tivity across the visual network. In particular, it will be
useful to determine how the phase synchrony (both syn-
chrony and antisynchrony) is implemented. It is possible
that the alpha oscillations observed in different layers
have distinct roles for coordinating communication. For
instance, alpha in supragranular layers might be involved
in coordinating interareal communication over long dis-
tances, while alpha in infragranular layers might be in-
volved in more local control of granular and supragranular
gamma power. Indeed, it has been shown that the supra-
granular layers exhibit a spatially specific connectivity in
both the feedforward and feedback pathways, while the
infragranular layers exhibit a more diffuse connectivity
(Markov et al., 2014). The more diffuse connectivity might
be related to the role of alpha oscillations in the inhibition
of all nonrelevant cortical columns in a rather unspecific
way, while the spatially specific connectivity could be
related to the communication of alpha activity within the
relevant pools of neurons.

The Role of Saccades and Slower
Rhythms

In most electrophysiological studies in humans and
animals on attention and visual perception, fixation is kept
constant. However, in daily life, we make saccades sev-
eral times per second. Furthermore, even when fixating,
microsaccades at 3–4 Hz are apparent (Bosman et al.,
2009; Lowet et al., 2016). In future work, it will be of great
interest to investigate how saccade relates to coupled
alpha and gamma oscillations. One intriguing possibility is
that the (micro-)saccades are coordinated with alpha os-
cillations (Gaarder et al., 1966; Drewes and VanRullen,
2011). While spatial sampling could involve saccades, it
could as well be implemented by rhythmic shifts of spatial
attention at slow frequency (Landau and Fries, 2012;
Fiebelkorn et al., 2013; Song et al., 2014; Landau et al.,
2015; VanRullen, 2016).

In the latest version of the CTC, Fries (2015) further
develops the idea that the cross-frequency coupling be-
tween theta and gamma oscillations implements visual
attentional sampling (Bosman et al., 2009, 2012). The
sampling role of theta oscillations in the visual system
proposed by Fries (2015), which seems to be transmitted
in the feedforward direction (van Kerkoerle et al. 2014;
Bastos et al. 2015), is different from the role of alpha
oscillations we propose. Specifically we suggest that the
role of alpha oscillations is to implement interareal com-
munication by modulating interareal phase synchroniza-
tion and the local magnitude. However, recent results
suggest that the theta and alpha rhythms could interact.
Song et al. (2014) presented interesting results showing
that the behavioral performances (in terms of reaction
time) in an attention task (discrimination of a square or a
circle) was modulated in the alpha range, but alternated
between the cued and uncued side at a theta rhythm (3–4
Hz), i.e., the behavior exhibited a theta–alpha coupling.

Further work is needed to understand in which situations
such slower rhythms are required and how they interact with
the alpha and gamma oscillations in relation to (micro-
)saccades. Finally, it is important to develop a model inte-
grating the feedforward sweep that is evoked by saccades
and microsaccades (Gaarder et al., 1966; Ito et al., 2013).

Conclusion
In this article, we have proposed a framework for flexible

communication between interconnected nodes in the brain
based on the coupling between slow oscillations in the
theta/alpha band and activity in the gamma band. Testing
the framework will require integrating animal and human
research to relate spiking to behavior from a mechanistic
perspective. This will allow for elucidating how representa-
tional specific information is exchanged between brain re-
gions. Finally, it needs to be understood how these cross-
frequency interactions are internally controlled. Of particular
interest is the involvement of the thalamus in coordinating
oscillatory activity between regions.
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