
Dear Mr. Faltings,

Many thanks for your quick answer and for sending me your reprints!
Your comments on the so-called “Theory of Motives” are of the usual kind,
and for a large part can be traced to a tradition which is deeply rooted in
mathematics. Namely that research (possibly long and exacting) and at-
tention is devoted only to mathematical situations and relations for which
one entertains not merely the hope of coming to a provisional, possibly
in part conjectural understanding of a hitherto mysterious region – as it
has indeed been and should be the case in the natural sciences – but also
at the same time the prospect of a possibility of permanently supporting
the newly gained insights by means of conclusive arguments. This attitude
now appears to me as an extraordinarily strong psychological obstacle to
the development of the visionary power in mathematics, and therefore also
to the progress of mathematical insight in the usual sense, namely the in-
sight which is sufficiently penetrating or comprehending to finally lead to a
“proof”. What my experience of mathematical work has taught me again
and again, is that the proof always springs from the insight, and not the
other way round – and that the insight itself has its source, first and fore-
most, in a delicate and obstinate feeling of the relevant entities and concepts
and their mutual relations. The guiding thread is the inner coherence of the
image which gradually emerges from the mist, as well as its consonance with
what is known or foreshadowed from other sources – and it guides all the
more surely as the “exigence” of coherence is stronger and more delicate.

To return to Motives, there exists to my knowledge no “theory” of
motives, for the simple reason that nobody has taken the trouble to work
out such a theory. There is an impressive wealth of available material both
of known facts and anticipated connections – incomparably more, it seems
to me, than ever presented itself for working out a physical theory! There
exists at this time a kind of “yoga des motifs”, which is familiar to a handful
of initiates, and in some situations provides a firm support for guessing pre-
cise relations, which can then sometimes be actually proved in one way or
another (somewhat as, in your last work, the statement on the Galois action
on the Tate module of abelian varieties). It has the status, it seems to me,
of some sort of secret science – Deligne seems to me to be the person who
is most fluent in it. His first [published] work, about the degeneration of
the Leray spectral sequence for a smooth proper map between algebraic va-
rieties over C, sprang from a simple reflection on “weights” of cohomology1

2
groups, which at that time was purely heuristic, but now (since the proof
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of the Weil conjectures) can be realised over an arbitrary base scheme. It
is also clear to me that Deligne’s generalisation of Hodge theory finds for
a large part its source in the unwritten “Yoga” of motives – namely in the
effort of establishing, in the framework of transcendent Hodge structures,
certain “facts” from this Yoga, in particular the existence of a filtration of
the cohomology by “weights”, and also the semisimplicity of certain actions
of fundamental groups.

Now, some words about the “Yoga” of anabelian geometry. It has to
do with “absolute” alg. geometry, that is over (arbitrary) ground fields
which are finitely generated over the prime fields. A general fundamental
idea is that for certain, so-called “anabelian”, schemes X (of finite type)
over K, the geometry of X is completely determined by the (profinite)
fundamental group π1(X, ξ) (where ξ is a “geometric point” of X, with
value in a prescribed algebraic closure K of K), together with the extra
structure given by the homomorphism:

(1) π1(X, ξ)→ π1(K, ξ) = Gal(K/K).

The kernel of this homomorphism is the “geometric fundamental group”

(2) π1(X, ξ) (X = X ⊗K K),

which is also the profinite compactification of the transcendent fundamental
group, when K is given as a subfield of the field C of the complex numbers.
The image of (1) is an open subgroup of the profinite Galois group, which
is of index 1 exactly when X is connected.

The first question is to determine which schemes X can be regarded as
“anabelian”. On this matter, I will in any case restrict myself to the case of
non-singular X. And I have obtained a completely clear picture only when
dim X = 1. In any case, being anabelian is a purely geometric property, that
is, one which depends only on X, defined over the algebraic closure K (or the
corresponding scheme over an arbitrary algebraically closed extension of K,
such as C). Moreover, X should be anabelian if and only if its connected
components are. Finally (in the one dimensional case), a (non-singular
connected) curve over K is anabelian when its Euler-Poincaré characteristic
is < 0, in other words, when its fundamental group is not abelian; this latter
formulation is valid at least in the characteristic zero case, or in the case of
a proper (“compact”) curve – otherwise, one should consider the “prime-to-
p” fundamental group. Other equivalent formulations: the group scheme of
the automorphisms should be of dimension zero, or still the automorphism2

3
group should be finite. For a curve of type (g, ν), where g is the genus, and
ν the number of “holes” or “points at infinity”, then the anabelian curves
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are exactly those whose type is not one of

(0, 0), (0, 1), (0, 2) and (1, 0)

in other words

2g + ν > 2 (i.e. − χ = 2g − 2 + ν > 0).

When the ground field is C, the anabelian curves are exactly those whose
(transcendent) universal cover is “hyperbolic”, namely isomorphic to the
Poincaré upper half plane – that is, exactly those which are “hyperbolic” in
the sense of Thurston.

In any case, I regard a variety as “anabelian” (I could say “elementary an-
abelian”), when it can be constructed by successive smooth fibrations from
anabelian curves. Consequently (following a remark of M.Artin), any point
of a smooth variety X/K has a fundamental system of (affine) anabelian
neighbourhoods.

Finally, my attention has been lately more and more strongly attracted
by the moduli varieties (or better modular multiplicities) Mg,ν of algebraic
curves. I am rather convinced that these also may be approached as “an-
abelian”, namely that their relation with the fundamental group is just as
tight as in the case of anabelian curves. I would assume that the same
should hold for the multiplicities of moduli of polarized abelian varieties.

A large part of my reflections of two years ago were restricted to the case
of char. zero, an assumption which, as a precaution, I will now make. As
I have not occupied myself with this complex of questions for more than a
year, I will rely on my memory, which at least is more easily accessible than
a pile of notes – I hope I will not weave too many errors into what follows!
A point of departure –among others– was the known fact that for varieties
X, Y over an algebraically closed field K, when Y can be embedded into a
[quasi-]abelian variety A, a map X → Y is determined, up to a translation
of A, by the corresponding map on H1 (`-adic). From this, it follows in
many situations (as when Y is “elementary anabelian”), that for a dominant
morphism f (i.e. f(X) dense in Y ), f is known exactly when H1(f) is. Yet3

4
the case of a constant map cannot obviously be included. But precisely the
case when X is reduced to a point is of particular interest, if one is aiming
at a “characterization” of the points of Y .

Going now to the case of a field K of finite type, and replacing H1 (namely
the “abelianised” fundamental group) with the full fundamental group, one
obtains, in the case of an “elementary anabelian” Y , that f is known when
π1(f) is known “up to inner automorphism”. If I understand correctly, one
may work here with the quotients of the fundamental group which are ob-
tained by replacing (2) with the corresponding abelianised group H1(X, Ẑ),
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instead of with the full fundamental group. The proof follows rather easily
from the Mordell-Weil theorem stating that the group A(K) is a finitely
generated Z-module, where A is the “jacobienne généralisée” of Y , corre-
sponding to the “universal” embedding of Y into a torsor under a quasi-
abelian variety. Here the crux of the matter is the fact that a point of
A over K, i.e. a “section” of A over K, is completely determined by the
corresponding splitting of the exact sequence

(3) 1→ H1(A)→ π1(A)→ π1(K)→ 1

(up to inner automorphism); in other words by the corresponding cohomo-
logy class in

H1(K, π1(A)),

where π1(A) can be replaced by the `-adic component, namely the Tate
module T`(A).

From this result, the following easily follows, which rather amazed me
two and a half years ago: let K and L be two fields of finite type (called
“absolute fields” for short), then a homomorphism

K → L

is completely determined when one knows the corresponding map

(4) π1(K)→ π1(L)

of the corresponding “outer fundamental groups” (namely when this map
is known up to inner automorphism). This strongly recalls the topological
intuition of K(π, 1) spaces and their fundamental groups – namely the ho-
motopy classes of the maps between the spaces are in one-to-one correspon-
dence with the maps between the outer groups. However, in the framework
of absolute alg. geometry (namely over “absolute” fields), the homotopy
class of a map already determines it. The reason for this seems to me to lie4

5
in the extraordinary rigidity of the full fundamental group, which in turn
springs from the fact that the (outer) action of the “arithmetic part” of this
group, namely π1(K) = Gal(K/L), is extraordinarily strong (which is also
reflected in particular in the Weil-Deligne statements).

The last statement (“The reason for this...”) came quickly into the type-
writer – I now remember that for the above statement on field homomor-
phisms, it is in no way necessary that they be “absolute” – it is enough
that they should be of finite type over a common ground field k, as long as
one restricts oneself to k-homomorphisms. Besides, it is obviously enough
to restrict attention to the case when k is algebraically closed. On the
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other hand, the aforementioned “rigidity” plays a decisive role when we
turn to the problem of characterizing those maps (4) which correspond to
a homomorphism K → L. In this perspective, it is easy to conjecture the
following: when the ground field k is “absolute”, then the “geometric” outer
homomorphisms are exactly those which commute with the “augmentation
homomorphism” into π1(K). [see the correction in the PS: the image must
be of finite index] Concerning this statement, one can obviously restrict
oneself to the case when k is the prime field, i.e. Q (in char. zero). The
“Grundobjekt” of anabelian alg. geometry in char. zero, for which the
prime field is Q, is therefore the group

(5) Γ = π1(Q) = Gal(Q/Q),

where Q stands for the algebraic closure of Q in C.
The above conjecture may be regarded as the main conjecture of “bira-

tional” anabelian alg. geometry – it asserts that the category of “absolute
birational alg. varieties” in char. zero can be embedded into the category of
Γ-augmented profinite groups. There remains the further task of obtaining
a (“purely geometric”) description of the group Γ, and also of understanding
which Γ-augmented profinite groups are isomorphic to some π1(K). I will
not go into these questions for now, but will rather formulate a related and
considerably sharper conjecture for anabelian curves, from which the above
follows. Indeed I see two apparently different but equivalent formulations:

1) Let X, Y be two (connected, assume once and for all) anabelian curves
over the absolute field of char. zero, and consider the map5

6

(6) HomK(X, Y )→ Hom extπ1(K)(π1(X), π1(Y )),

where Hom ext denotes the set of outer homomorphisms of the profinite
groups, and the index π1(K) means the compatibility with augmentation
into π1(K). From the above, one knows that this map is injective. I con-
jecture that it is bijective [see the correction in the P.S.]

2) This second form can be seen as a reformulation of 1) in the case of a
constant map from X into Y . Let Γ(X/K) be the set of all K-valued points
(that is “sections”) of X over K; one considers the map

(7) Γ(X/K)→ Hom extπ1(K)(π1(K), π1(X)),

where the second set is thus the set of all the “splittings” of the group
extension (3) (where A is replaced by X – π1(X)→ π1(K) is actually sur-
jective, at least if X has a K-valued point, so that X is also “geometrically
connected”), or better the set of conjugacy classes of such splittings under
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the action of the group π1(X). It is known that (7) is injective, and the
main conjecture asserts that it is bijective [see the correction below].

Formulation 1) follows from 2), with K replaced by the function field of
X. Moreover, it is indifferent whether X is anabelian or not and, if I am not
mistaken, assertion 1) follows even for arbitrary non-singular X (without
the assumption dim X = 1). Concerning Y , it follows from the conjecture
that assertion 1) remains true, as far as Y is “elementary anabelian” [see the
correction in the PS], and correspondingly of course for assertion 2). This
in principle now gives the possibility, by applying Artin’s remark, to obtain
a complete description of the category of schemes of finite type over K “en
termes de” Γ(K) and systems of profinite groups. Here again I have typed
something a little too quickly, as indeed the main conjecture should first be
justified and completed with an assertion about which (up to isomorphism)
complete Γ(K)-augmented profinite groups arise from anabelian curves over
K. Concerning only an assertion of “pleine fidélité” as in formulations 1)
and 2) above, it should be possible to deduce the following, without too
much difficulty, from these assertions, or even already (if I am not mistaken)
from the above considerably weaker birational variant. Namely, let X and Y

be two schemes which are “essentially of finite type over Q”, e.g. each one is
of finite type over an absolute field of char. zero. (remaining undetermined).
X and Y need to be neither non-singular nor connected, let alone “normal”6

7
or the like – but they must be assumed to be reduced. I consider the etale
topoi Xet and Yet, and the map

(8) Hom(X, Y )→ Iskl Homtop(Xet, Yet),

where Homtop denotes the (set of) homomorphisms of the topos Xet in
Yet, and Iskl means that one passes to the (set of) isomorphism classes.
(It should be noted moreover that the category Homtop(Xet, Yet) is rigid,
namely that there can be only one isomorphism between two homomor-
phisms Xet → Yet. When X and Y are multiplicities and not schemes,
the assertion below should be replaced with a correspondingly finer one,
namely one should state an equivalence of categories of Hom(X, Y ) with
Homtop(Xet, Yet).) It is essential here that Xet and Yet are considered sim-
ply as topological spaces, that is without their structure sheaves, whereas
the left-hand side of (8) can be interpreted as Iskl Homtop.ann.(Xet, Yet).
Let us first notice that from the already “known” facts, it should follow
without difficulty that (8) is injective. In fact I now realize that in the
description of the right-hand side of (8), I forgot an important element
of the structure, namely that Xet and Yet must be considered as topoi
over the absolute base Qet, which is completely described by the profinite
group Γ = π1(K) (5). So Homtop should be read Homtop/Qet . With this
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correction, we can now state the tantalizing conjecture that (8) should be
bijective. This may not be [altogether] correct for the reason that there can
exist radicial morphisms Y → X (so-called “universal homomorphisms”),
which produce a topological equivalence Yet

∼→Xet, without being an iso-
morphisms, so that there does not exist an inverse map X → Y , whereas it
does exist for the etale topoi. If one now assumes that X is normal, then I
conjecture that (8) is bijective. In the general case, it should be true that
for any φ on the right-hand side, one can build a diagram
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g

?

@
@
@

@
@
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X Y

(where g is a “universal homomorphism”), from which φ arises in the obvious
way. I even conjecture that the same assertion is still valid without the char.
zero assertion, that is when Q is replaced by Z – which is connected with
the fact that the “birational” main conjecture must be valid in arbitrary
characteristic, as long as we replace the “absolute” fields with their “perfect7

8
closures” Kp−∞ , which indeed have the same π1.

I am afraid I have been led rather far afield by this digression about
arbitrary schemes of finite type and their etale topoi – you may be more
interested by a third formulation of the main conjecture, which sharpens it a
little and has a peculiarly “geometric” ring. It is also the formulation I told
Deligne about some two years ago, and of which he told me that it would
imply Mordell’s conjecture. Again let X be an anabelian geometrically con-
nected curve over the absolute field K of char. zero, X̃ its universal cover,
considered as a scheme (but not of finite type) over K, namely as the univer-
sal cover of the “geometric” curve X. It stands here as a kind of algebraic
analogue for the transcendental construction, in which the universal cover is
isomorphic to the Poincaré upper half-plane. I also consider the completion
X∧ of X (which is thus a projective curve, not necessarily anabelian, as X

can be of genus 0 or 1), together with its normalisation X̃∧ with respect to
X̃, which represents a kind of compactification of X̃. (If you prefer, you can
assume from the start that X is proper, so that X = X∧ and X̃ = X̃∧.) The
group π1(X) can be regarded as the group of the X-automorphisms of X̃,
and it acts also on the “compactification” X̃∧. This action commutes with
the action on K via π1(K). I am now interested in the corresponding action

Action of π1(X) on X̃∧(K),
(the [set of] K-valued points, or what comes to the same thing, the points
of X∧ distinct from the generic point), and in particular, for a given section
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of (3)
π1(K)→ π1(X),

I consider the corresponding action of the Galois group π1(K). The conjec-
ture is now that the latter action has (exactly) one fixed point.

That it can have at most one fixed point follows from the injectivity in (7),
or in any case can be proved along the same lines, using the Mordell-Weil
theorem. What remains unproved is the existence of the fixed point, which
is more or less equivalent to the surjectivity of (7). It now occurs to me that
the formulation of the main conjecture via (7), which I gave a while ago, is
correct only in the case where X is proper – and in that case, it is in effect
equivalent to the third (just given) formulation. In the contrary case where
X is not proper, so has “points infinitely far away”, each of these points8

9
clearly furnishes a considerable packet of classes of sections (which has the
power of the continuum), which cannot be obtained via points lying at a
finite distance. These correspond to the case of a fixed point in X̃∧ which
does not lie in X̃. The uniqueness of the fixed point means among other
things, besides the injectivity of (7), that the “packets” which correspond
to different points at infinity have empty intersection; and thus any class
of sections which does not come from a finite point can be assigned to a
uniquely defined point at infinity.

The third formulation of the main conjecture was stimulated by certain
transcendental reflections on the action of finite groups on complex alge-
braic curves and their (transcendentally defined) universal covers, which
have played a decisive role in my reflections (during the first half of 1981,
that is some two years ago) on the action of Γ on certain profinite anabelian
fundamental groups (in particular that of P1 − (0, 1,∞)). (This role was
mainly that of a guiding thread into a previously completely unknown re-
gion, as the corresponding assertions in char p > 0 remained unproved,
and still do today.) To come back to the action of the Galois groups as
π1(K), these appear in several respects as analogous to the action of finite
groups, something which for instance is expressed in the above conjecture
in a particularly striking and precise way.

I took up the anabelian reflections again between December 81 and April
82, that time with a different emphasis – namely in an effort toward un-
derstanding the many-faceted structure of the [Teichmüller] fundamental
groups Tg,ν (or better, the fundamental groupoids) of the multiplicities of
moduli Mg,ν , and the action of Γ on their profinite completions. (I would
like to return to this investigation next fall, if I manage to extricate myself
this summer from the writing up of quite unrelated reflections on the foun-
dations of cohomological resp. homotopical algebra, which has occupied me
for four months already.) I appeal to your indulgence for the somewhat
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chaotic presentation of a circle of ideas which intensively held my attention
for six months, but with which I have had for the past two years only very
fleeting contacts, if any. If these ideas were to interest you, and if you hap-
pened at some point to be in the south of France, it would be a pleasure for
me to meet with you and to go into more details of these or other aspects
of the “anabelian Yoga”. It would also surely be possible to invite you to
Montpellier University for some period of time at your convenience; only I
am afraid that under the present circumstances, the procedure might be a
little long, as the university itself does not at present have funds for such9

10
invitations, so that the invitation would have to be decided resp. approved
in Paris – which may well mean that the corresponding proposal would have
to be made roughly one year in advance.

On this cheering note, I will put an end to this letter, which has somehow
grown out of all proportion, and just wish you very pleasant holidays!
Best regards

Your Alexander Grothendieck

PS Upon rereading this letter, I realize that, like the second formulation
of the main conjecture, also the generalisation to “elementary anabelian”
varieties must be corrected, sorry! Besides I now see that the first formula-
tion must be corrected in the same way – namely in the case where Y is not
proper, it is necessary to restrict oneself, on the left-hand side of (6), to non-
constant homomorphisms, and on the right-hand side to homomorphisms
π1(X) → π1(Y ), whose images are of finite index (i.e. open). In the case
where Y is replaced by an elementary anabelian variety, the bijectivity of
(6) is valid, as long as one restricts oneself to dominant homomorphisms on
the left-hand side, keeping the same restriction (finite index image) on the
right-hand side. The “birational” formulation should be corrected analo-
gously – namely one must restrict oneself to homomorphisms (4) with finite
index image.

Returning now to the map (7) in the case of an anabelian curve, one
can specify explicitly which classes of sections on the right-hand side do not
correspond to a “finite” point, thus do not come from an element on the left-
hand side; and if I remember correctly, such a simple characterization of the
image of (7) can be extended to the more general situation of an “elementary
anabelian” X. As far as I now remember, this characterization (which is of
course just as conjectural, and indeed in both directions, “necessary” and
“sufficient”) goes as follows. Let

π1(K)o = Kernel of π1(K)→ Ẑ∗ (the cyclotomic character).
Given a section π1(K)→ π1(X), π1(K) and therefore also π1(K)o operates
on π1(X), the geometric fundamental group. The condition is now that the
subgroup fixed under this action be reduced to 1!


