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Dehaene, 8., 1992. Varicties of numencal abilities. Cognition, 44; 1-42.

e

This paper provzdes a tutonal mtroductzon to numerical cognition, with a review of
essential ﬁndmgs and current ‘points of debate. A tacit hypothesis in cognitive
arithmetic is that numerical abilities derive from human linguistic competence. One
aim of thts specml issue is to confrom this hypothesis with current knowledge of
number’ representations in animals, infants, normal and gifted adults, and brain-
lesioned pauenrs First, the hzstorzcal evolution of number notations is presented,
together with 'the mental processes for calculating and transcoding from one
notation to “another. While these domains are well described by formal symbol-
processmg models, this paper argues that such is not the case for two other domains
of numencal _competence: quantification and approximation. The evidence for
coummg, subzrzzmg and numerosity estimation in infants, children, adults and
animals is crmcally examined. Data are also presented which suggest a specializa-
tion for processmg approximate numerical quantities in animals and humans. A
synthesis of these findings is proposed in the form of a triple-code model, which
assumes that numbers are mentally manipulated in an arabic, verbal or analogical
magnitude code dependmg on the requested mental operation. Only the analogical
magnzttfde representauon seems available to animals and preverbal infants.

Pt 2 =

“What is a number,’ that a man may know it, and a man, that he may know a
number?” (McCulloch, 1965). From Plato to Mill, Locke or Frege, the problem
of the nature of numbers has always concerned philosophers of the mind.
Although the issue has often been addressed on a logical-mathematical basis, the
potential COPtrlbuthnS of psyc]llologlcal experimentation to the comprehension of
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2 S. Dehaene

the multiple facets of the number concept have recently been recognized (e.g.,
Kitcher, 1984). In parallel and somewhat independently, experimenters have
begun to explore the mental processes used in number comprehension, produc-
tion and calculation. Research in this area tends to cross the traditional bound-
aries of cognitive science. Studies of arithmetical competence in the adult benefit
from an understanding of the developmental sequence through which numerical
representations pass during childhood (Asheraft, this issue; Gallistel & Gelman,
this issue). Likewise, precursors of human numeracy are found in the remarkable
sensitivity of some animals to numerical parameters (Gallistel & Gelman, this
issue). Finally the study of brain-lesioned patients (McCloskey, this issue) and of
gifted adults (Seron et al., this issue) sheds light on the modular architecture and
range of individual variabiiity of the human number processing system.

The purpose of this issue is to confront and compare the large quantities of
data that have emerged from "these domains in recent years. However, such
interdisciplinary endeavours are often hindered by lack of a common reference
vocabulary. The present introductory paper aims at providing the newcomer to
the field with a selected review of the main experimental findings and current
research issues surrounding the “concept of number”.

This review will specifically focus on the relation between numerical abilities
and the language faculty. The prevailing notion that human numerical activities
are deeply linked to language is critically examined. First, number notations are
described in a historical perspective. Then the mental processes used to com-
prehend numerals, perform mental calculations and produce an appropriate
written or spoken numerical answer are reviewed. Formal symbol-processing
models of calculation and transcoding have been extremely successful. However,
an inclusive review suggests that there are other domains of numerical compe-
tence that cannot be so easily reduced to a subset of language abilities. The case
for non-verbal quantification of sets of objects, including infant and animal
counting as well as adult subitizing, is discussed in some detail. Experiments are
also reviewed suggesting a non-verbal, analogical representation of numerical
quantities in human adults. Dwelling on my earlier notion of “two mental
calculation systems” (Dehaene & Cohen, 1991), I will conclude with some
speculations on a model for the interaction between preverbal and verbal
numerical abilities in human adults.

I. THE CLASSICAL ADULT MODEL: TRANSCODING AND
CALCULATION

For the lay person, calculation is the numerical activity par excellence. Calcula-
tion in turn rests on the ability to read, write, produce or comprehend numerals
(number transcoding; e.g., Deloche & Seron, 1987). Therefore number process-
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ing, in its fundamental form,” seems intuitively linked to the ability to mentally
manipulate ‘sequences of words or symbols according to fixed transcoding or
calculation rules. Hurford (1987), following Chomsky (1980), argues that “the
number faculty largely emerges through the interaction of central features of the
language faculty with other cognitive capacities relating to the recognition and
manipulation of concrete objects and collections . . . . It is therefore not necessary
to postulate an autonomous ‘faculty of number’ as a separate module of mind”
(p. 3). This view of what constitutes the core of numerical ability, although it is
rarely articulated as clearly, is widely spread, and it has been largely successful in
modelling adult human arithmetical performance el i
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Historically, number notations have passed through several stages of increasing
efficiency (Dantzig, 1967; Guitel, 1975; Ifrah, 1981; Menninger, 1969). This
evolution is important to consider because it has influenced our present notational
systems. The simplest numerical notations are concrete (Ifrah, 1981): a number of
similar tokens (e.g., fingers, notches on a stick, knots on ancient quipu-Inca
strings) are put in one-to-one correspondence with the denumerated set, and the
resulting pattern of tokens serves as a number word. Thus, ‘‘four’’ is written ||| in
Egyptian hieroglyphic notation. The category of concrete notations also includes
the peculiar gestural notations used in New Guinea, where numbers up to 33 are
denoted by pointing to different parts of the body, or by naming the appropriate
part (e.g., the word for 23 is literally “left ankle””). =~ s

Written concrete notations are tedious because above some limit consecutive
number words cannot be rapidly discriminated. This difficulty was obviated in
many ancient cultures by grouping the marks in a recognizable pattern (e.g.,
5=|||| in Egyptian hieroglyphs) or by inventing altogether new symbols (e.g.,
5=TI in ancient Greek).. Additive notations later emerged as a solution to the
problem of memorizing new arbitrary symbols for each number. Special symbols
are attributed to some fundamental numbers (e.g., 10 and 100). The notation for
any number is then obtained by juxtaposing the appropriate number of symbols of
each sort (e.g., 43 is denoted “'10101010111”"). Although fundamental numbers
are often powers of 10, this is by no means necessary. For instance some African
tribes use base 2, Sumerians used the fundamental numbers 10, 60, 100, 600, 3600
and 36,000, and Greeks had distinct symbols (letters) for numbers 1-9,710-90 and

100-900 (Guitel, 1975; Ifrah, 1981; Menninger, 1969). = -5 = ¢ o === x
A more compact’ notat:on is achieved with hybnd mulr:plzcanve addmve

lncidcmally',-s;;ch deviations from strictly concrete notations always start at 4 or 5 -(lfr‘ah,' 1981),
strongly suggesting the cross-cuiturai invariance of the subitizing range (see below). = _ =7 7
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4 S. Dehaene

notations, a good example of which is provided by English verbal notation.
Fundamental numbers, instead of being reproduced several times, are preceded
by another number by which the fundamental number must be multiplied. For
instance we say “‘three hundred” rather than “hundred hundred hundred”. In
contrast to additive notations, where word order is irrelevant, hybrid multiplica-
tive—additive notations possess a complex syntax. The linguistic structure of
hybrid numerals (Hurford, 1975, 1987; Power & Longuet~Higgins, 1978) can be
described as a tree with successive embeddings of multiplication and addition.
‘Thus, if M denotes multiplication and A addition, the English numeral for
350,172 can be decomposed in the following way:

T A
— l
—— A f A 1
ey — Mo A=
three hundred and fifty thousand one hundred and seventy two

In hybrid notations, two classes of basic number words must be distinguished:
words like “three” that refer to specific numerical quantities, and multiplier words
like “hundred”, that Guitel (1975) calls o signs, which often have no intrinsic
numerical value and serve as grammatical markers in the word string. In the
simplest base-10 multiplicative—additive notation, exemplified by Japanese Kanji
notation, the lexicon is limited to the ones number words (one through nine) and
the multiplier words ten, hundred, thousand, etc. For instance, 12 is written as
“ten two”, and 27 as “two ten seven”. In the more complex English system,
addition of ten and multiplication by ten are not indicated by a multiplier word
but through morphological markers (-teen or -ty). As a result, the English lexicon
is augmented with two number words classes, teens words (ten..nineteen) and fens
words (twenty..ninety).

Despite their ingenuity, hybrid notations limit the range of denoted numbers,
do not provide a compact code, and do not permit easy calculation. These defects
vanish in written positional notations, exemplified by arabic notation. The lexicon
is reduced to a small set of symbols (digits), which denote the integers that are
smaller than the base. The position of each digit in the numeral determines the
power of the base by which it must be multiplied (e.g., 321 =3 x100+2x 10 +
1). If only the digits 1-9 are defined, then this system is ambiguous. For instance
3x 100+ 1 and 3 x 10 + 1 are denoted by the very similar strings “3 1" and *“31”.
Even worse, the numbers 3, 3 X 10, and 3 x 100 are coded by the same string ““3”.
Such ambiguities actually exist in some written notations, for instance cuneiform
script (Ifrah, 1981; Menninger, 1969). To prevent them, the special symbol 0 was
invented to explicitly indicate the absence of a given power of the base in the
decomposition of a number. Digit zero, before acquiring a meaning of its own,
worked only as a syntactic device.

i e
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Every English literate can produce and understand numerals in at least two
numerical notations: arabic and verbal. How are the corresponding transcoding
rules mentally represented? The study of brain-lesioned patients with “aphasic
acalculia” — deficits in number reading, writing, auditory comprehension or verbal
production — has helped to answer this question (McCloskey, this issue)- The
processing of arabic numerals, for instance, can be dissociated neuropsychologi-
cally from the processing of verbal numerals (McCloskey & Caramazza, 1987;
McCloskey, this issue). Within each notation system, patients can be found with
intact number production but impaired number comprehension, or the converse
(e.g., Benson & Denckla, 1969; McCldskey, Sokol, & Goodman, 1986; McClos-
key & Caramazza, 1987, McCloskey, Sokol, Goodman—Schulman & Caramazza,
1990; Noel & Seron, 1992). - : = Seg . 3
The neuropsychological approach has culminated in identifying dissociations of
lexical and syntactic number transcoding processes. The two classes of.impair-
ments yield different error:patterns in reading or in writing numerals. <Some
patients make digit or word substitution errors (e.g.; they read 450 as “‘three
hundred ‘fifty”"),” but’ otherwise make no errors in the structure of.the word
sequence. This qualifies as lexical impairment with preserved syntax. Detailed
studies of the breakdown of the mental lexicon for numerals have revealed a
micro-organization in:separate stacks for ones, teens, tens, and- perhaps also
multiplier words (Deloche & Seron, 1982a, 1982b, 1984; McCloskey et al., . 1986;
see McCloskey, this issue),- thus confirming the linguistic analysis of numerical
notations (Hurford, 1975; Power & Longuet-Higgins, 1978).7 7 5: -2-.. . e
Other patients process individual digits or number words correctly, but fail to
combine them: For instance, French aphasics may transcode the verbal numeral
“sept cent mille” (700,000) into the arabic numeral “1,107” (mille cent sept), and
therefore ignore the multiplicative structure implied by word order (Deloche &
Seron, 1982a, 1982b, 1987; Seron & Deloche, 1983). Such a pattern suggests an
impairment of number syntax. Elaborate analyses of patients’ transcoding errors
have permitted the development of precise models of normal number processing.
For -instance, McCloskey et al. (1986) have modelled the successive steps
intervening in.the production of a numeral in verbal notatlon (for review see
McCloskey, this 1ssue) . TR M & o § e RS T
The lexical versus syntactic distinction in number transcodmg is corroborated
by studies of number acquisition in children. Children acquiring the sequence of
number words make two types of errors. First, they sometimes use one number
word in place of another, for instance, invariably counting “one, two,: six”
(Gelman & Gallistel, 1978); this qualifies as a lexical error. Second, they may
invent number words such as twenty-ten, twenty-eleven, etc. (Fuson; 1982, 1988;
Seron & Deloche, 1987; Siegler & Robinson, 1982). This represents an over-
generalization of the mferred rules of number syntax (see Power & Longuet-
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Higgins, 1978, for a computational model of number grammar induction). The
rate and typology of such syntactic errors depends on the complexity of the
*acquired number notation, e.g., Chinese, English, or Korean (Miller & Stigler,
+1987; Song & Ginsburg, 1988).

‘Formal calculation processes

o
With the mastery of a positional system such as arabic notation comes the ability
to calculate, that is, to predict by symbolic manipulation the result of a physical
regrouping or partitioning act without having to execute it. Over recent years,
adult and infant performance in addition and multiplication, and to a lesser extent
in subtraction and division, has been the focus of extensive research. Results in
this area, which is referred to as cognitive arithmetic, are thoroughly reviewed by

_ f\shcraft'(this issue). For the sake of completeness of the present introduction,
.the main findings are summarized below.

Single-digit operations

The fundamental result of cognitive arithmetics in normal adults is the problem
size effect. The time to solve a single-digit addition or multiplication problem such
as 2+3 or 4 x 7 increases with the size of the operands (e.g., Parkman, 1972;
Parkman & Groen, 1971; Svenson, 1975; for review see Ashcraft, this issue). For
instance, computing 8 X9 may take 200 ms more than computing 2 X2. The
increase is generally non-linear: calculation time correlates well with the product
of the operands, or with the square of their sum. A notable exception is the case
of ties (e.g., 2+ 2, 4 X 4), for which response time is constant or increases only
moderately with operand size (Miller, Perlmutter, & Keating, 1984; Parkman,
1972).

Ashcraft (this issue) describes in great detail and in a historical perspective the
variety of models that have been proposed for these results. Although several
models remain in competition, all now share the notion that in the adult,
arithmetical facts such as 2 X2 =4 are memorized and retrieved from a stored
mental network or lexicon. The problem size and tie effects are viewed as
reflecting the duration and difficulty of memory retrieval. These effects are
comparable to frequency effects in lexical access. According to Ashcraft (1987),
they faithfully reflect the frequency with which arithmetical facts are acquired and
practised (see Gallistel & Gelman, this issue, for contrasting views).

Many results in cognitive arithmetics are nicely embraced by the analogy of
stored addition and multiplication tables with a lexicon. Spreading activation
among related facts can account for the difficulty of rejecting problems like
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5x 7=30, where the proposed result falls in the same row or column as the
correct result (Stazyk, Ashcraft, & Hamann, 1982). Calculation errors also tend
to follow a similar pattern (Campbell & Graham, 1985; Ashcraft, this issue). As
in word recognition, repetition priming obtains in arithmetical fact retrieval: a
problem like 7 + 4 = 11 15 classified faster the second time it is presented (Ashcraft
& Battaglia, 1978). Error priming, whereby an erroneous response to a given
arithmetic problem is selectively enhanced by the prior presentation of a problem
for which this response was correct, also obtains (Campbell, 1987; Campbell &
Clark, 1989). Thus, after processing 4 X 6, the probability of erroneously respond-
ing 24 to 3 X 7 is increased. Such priming effects may last for one minute or more
(Campbell & Clark, 1989), suggesting that stored arithmetical facts behave like
logogens with a fluctuating threshold of activation (Morton, 1970).

Finally, evidence suggests, if not definitively, that the arithmetical store is
accessed automatically. Zbrodoff and Logan (1986) found slow verification
responses to problems like 3 + 4 = 12, in which the proposed result is actually the
result of the wrong operation (see also Winkelman & Schmidt, 1974). This
suggests that both multiplication and addition are inittated irrepressively from the
presentation of an arithmetical problem. LeFevre, Bisanz, and Mrkonjic (1988)
found that the mere presentation of two digits like ““42” in a memory task yielded
an automatic activation of the addition result 6: subjects took more time to verify
that a probe digit did not belong to the previous set when this probe was equal to
the sum of the digits (6) than when it was another unrelated digit (e.g., 3).

The study of neuropsychological deficits in arithmetical fact retrieval has
basically confirmed the picture obtained from normal subjects (McCloskey,
Aliminosa, & Sokol, 1992; McCloskey, this issue). Brain damage can selectively
impair memory for addition and multiplication tables. Disruption is often scat-
tered, affecting, for instance, the retrieval of 8 X 8 but not of 9 X 8 or 8 X 9. This
suggests that these facts are mentally represented independently from one
another. An exception to this pattern is the case of multiplications by 0 and by 1,
and perhaps also additions of 0 (McCloskey, this issue; McCloskey et al., 1992).
Many patients, when they fail, for instance, on problem 0 x 1, also tend to fail on
other related problems 0% 2, 0X 3, etc. In case of spontaneous recuperation,
such problems also tend to be recovered simultaneously in time. Neuropsycho-
logical data therefore support the proposition made by several authors (e.g.,
Baroody, 1983, 1984a; Parkman, 1972) that part of our arithmetical knowledge is
stored in rules of the form OX N=0, IXN=Nor N+0= N,

Mulri-digit calculation procedures

Introspectively, calculation with multi-digit numerals involves the sequential
combination of elementary arithmetical operations using a specific algorithm
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learned at school. Psychological research with normal adults essentially confirms
this model (Ashérraft & Stazyk, 1981; Geary, Widaman, & Little, 1986; Widaman,
Geary, Cormier, & Little, 1989; Timmers & Claeys, 1990). The time to complete
a multi-digit operation such as 24 -+ 37 is accurately predicted by the retrieval time
of the elementary facts (4+7 and 2+ 3), plus some precise latency for the
encoding of the operands and for possible carry operations. As might be
+ expected, the calculation of additions generally proceeds columnwise from right
to left. When an operation is verified, the calculation stops as soon as an error is
detected in the proposed result. Encoding, carrying and sequencing operations
seem common to addition and multiplication (Geary et al., 1986).

The study of calculation error in brain-lesioned patients confirms the existence
of dissociable procésseé for the retrieval of arithmetical facts and for their
sequencing. It is frequent for a patient to retain the ability to perform single-digit
operations while making gross errors in multi-digit operations, or the converse
(e.g., Caramazza & McCloskey, 1987; McCloskey, this issue). Even normal
subjects, especially children, often make systematic calculation errors such as
failing to carry properly in multi-digit subtraction problems. These systematic
errors have been characterized as repairs to a faulty mental calculation algorithm
(van Lehn, 1990). ’

Alternative calculation strategies in childhood

A fundamental question in cognitive arithmetics concerns the manner in which
children converge to adult calculation abilities (Ashcraft, 1982, 1987, this issue;
Siegler & Shrager, 1984). The majority of investigators have concentrated on the
operation of addition, which shows a clear developmental trend from early
counting-based strategies to adult memory retrieval. In young children, a frequent
strategy is the counting on procedure, in which children start with the larger of the
operands and count upward as many times as is required by the smaller of the
operands (Groen & Parkman, 1972; Svenson, 1975). Thus 4 + 3 is calculated by
counting 4, 5, 6, 7. This is also called the min strategy because calculation time is
accurately predicted by the minimum of the two addition operands. It is closely
related to the alternative counting all strategy, in which the child counts from one
up the number of times indicated by the first and then the second operand (e.g.,
for 4+3:1,2,3,4,5,6,7;, Baroody & Ginsburg, 1986; Fuson, 1982).

Several other strategies are available to the child: guessing, decomposing the
problem (e.g., 4 + 8 = (4 + 6) +2), retrieving the answer from memory, etc. It is
not true, as was initially thought, that the use of such strategies follows a strict
developmental sequence, or that children use only one strategy at any given time
in development. Rather, individual children typically switch between strategies
from trial to trial (Siegler, 1987a), and which strategy is selected depends on the
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reliability and speed of the available strategies, as measured over previous
calculation trials (Siegler & Shrager, 1984).

»‘During the development of simple arithmetical abilities, memory retrieval
progressively wins over other calculation processes. Theoretical acquisition mod-
els, reviewed by Ashcraft (this issue), attribute the speed of such memory
strengthening either to the order and frequency of presentation of arithmetical
facts (Ashcraft, 1987), or to interference from crroneous results that compete
with the correct result for memorization (Siegler & Shrager, 1984). The acquisi-
tion of subtraction and .multiplication facts has been similarly studied and
modelled (Ashcraft, 1982; Graham, 1987; Miller & Paredes, 1990, Siegler 1987b,
1988). Finally the acquisition of algorithms for multi-digit operations, a case of
induction of a procedure from examples, has been modelled by van Lehn (1986,
1990). o

%

S e

Conclusion g B
The language faculty has endowed humans with the ability to develop number
notations especially tailored to their calculation and communication needs. Most
of adult number processing relies heavily on these notational devices, thereby
explaining the predictive power of models assuming a mental “algebra” of symbol
manipulations. Mental calculation errors can even be described as “bugs” within a
mental calculation program (van Lehn, 1986, 1990). Nevertheless, in the rest of
this' paper, the view that number processing reduces to linguistic or symbolic
processing is challenged as a general model for animal, infant or even adult
numerical abilities. It is argued below that identification of numerical competence
with calculation and transcoding neglects two fundamental domains, quantifica-
tion and approximation, that do not seem to be based on symbol manipulation.

L

1I. QUANTIFICATION AND THE NATURE OF PREVERBAL NUMERICAL
KNOWLEDGE e

L
At the most concrete level, number is a property of sets of objects in the external
world, which must be recognized and mentally represented before any form of
numerical cognition can develop. To escape the ambiguity of the word “number”,
the term numerosity is used to, refer specifically to a measurable numerical
quantity, and the neologism numeron denotes a mental representative of numer-
osity (Gelman & Gallistel, 1978). Quantification consists in grasping the numer-
osity of a perceived set and accessing the corresponding (possibly approximate)
mental token or numeron. Three quantification processes have been postulated:
counting, subitizing, and estimation (Klahr, 1973; Klahr & Wallace, 1973). We
shall consider these three processes in turn.

EH
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Counting )

iy
Gelman and Gallistel (1978) have proposed a now universally adopted definition
of counting in terms of five principles:

(1) One to one correspondence: each element of the counted set must map onto
one and only one numeron.

(2) Stable order: the numerons must be ordered and mapped in a reproducible
sequence onto the items to be counted.

(3) Cardinality: the last numeron used during a count represents a property of
the entire set (its cardinality or numerosity).

(4) Abstraction: counting applies to any collection of entities (all sorts of
physical objects, possibly forming a heterogencous set, as well as purely
mental constructs). g "

(5) Order irrelevance: the order in which different elements of the counted set
are mapped onto numerons is irrelevant to the counting process.

Gelman and Gallistel’s (1978) definition of counting puts no constraints on the
nature of the numerons, except that they must be reproducibly ordered. The
definition allows for the use of an idiosyncratic list of number words: a child who
reproducibly counts ‘““one two six . ..” may nevertheless master the principles of
counting. It does not imply either that the numerons are words of the language:
hand or body gestures, as used by African and New-Guinean tribes, may support
counting as well. According to Gallistel and Gelman (this issue), competence for
counting and competence for language are largely distinct. Counting is therefore
accessible in principle to non-linguistic animals as well as to prelinguistic human
infants.

In fact there is now a wealth of evidence for elementary number processing in
animals, which has been reviewed elsewhere (Gallistel & Gelman, this issue;
Davis & Pérusse, 1988; Gallistel, 1990). For instance, Matsuzawa (1985) trained a
chimpanzee to press a key with the appropriate arabic digit in response to sets of
1-6 objects. Meck and Church (1983) conditioned a rat to press one lever in
response to a sequence of 2 beeps, and another lever in response to a sequence of
8 beeps. Even when duration was confounded with numerosity during the training
phase, the rats gave evidence of subsequent generalization on the basis of
numerosity alone.

Animal numerical discrimination is not limited to small numerosities, but may
extend, for instance, to sequences of 50 events (Rilling & McDiarmid, 1965).
However, the variance in the animal’s representation of numerosity apparently
increases in proportion with the input numerosity. This *“‘scalar property” suggests
the use of a noisy quantification procedure. In Meck and Church’s (1983) model
of animal counting, numbers are represented internally by the continuous states
of an analogue accumulator. For each counted item, a more-or-less fixed quantity

" o3
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is added to the accumulator. The final state of the accumulator therefore
correlates well with numerosity, although it may not be a fully precise representa-
tion of it. At odds with the human slow and self-monitored verbal form of
counting, this model endows the animal with a fast, mechanical, but intrinsically
approximate counting device. Gallistel and Gelman (this issue) suggest that
human infants are equipped with a similar preverbal counting mechanism that
may “‘bootstrap” the acquisition of the verbal number system.

- r\r-

When do children understand couminé?
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While Gelman and Gallistel's (1978) definition widens the range of counting
behaviours, for instance allowing for non-verbal counting, it also puts stronger
demands on the identification of genuine counting in children. It is not sufficient
for a child to recite the adequate series of number words in one-to-one corre-
spondence. with the elements of:-the counted set. Cardinal, abstraction and
order-irrelevance principles must also be satisfied. Concerning the emergence of
these principles in childhood, two opposing theoretical views have been proposed.
Gelman and Gallistel's (1978). principles-first theory states that principles are
innate and guide the acquisition of counting procedures. This view revived the old
competence/perfonﬁancc distinction., Thus, Greeno, Riley, and Gelman (1984)
favoured a three-tiered model, with conceptual competence (abstract constraints
or principles) and utilization competence (understanding of task demands) predat-
ing the generation of adequate behavioural procedures. In sharp contrast, the
principles-after theory (e.g., Briars & Siegler,” 1984; Fuson, 1988; Fuson & Hall,
1983) states that counting principles are progressively abstracted, in a Piagetian
manner, after repeated practice with imitation-derived rote counting procedures.

The assessment of a putative principled competence behind simple counting
performance has resulted, in the last ten years, in a very rich body of research.
Attention has been drawn not so much to what children can do, but to what they
understand about what they do. Can they monitor their counting errors, or detect
errors in a puppet’s counting? Can they invent adequate procedures for unusual
counting situations, such as counting a circular display?

Gelman and Meck (1983) assessed undefstanding of the one-one and order-
irrelevance principles by having children discriminate correct versus wrong counts
by a puppet. Of interest were trials in which the puppet counted all the items
correctly, 'but in an unconventional-order instead of the standard left-to-right
order. Despite neveflhaving seen such counting before, most children classified it
as correct.” Gelman and Gallistel (1978) also showed that young children readily
accepted to start their count with any given item and not necessarily the one

*Briars and Siegler (1984) failed to replicate this result. However, Gelman and Meck (1986) gave a

convincing explanation for this discrepancy: Briars and Siegler’s children were led to judge the
conventionality of the count rather than its correctness. ~
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furthest left.> Current evidence therefore suggests an early availability of the
order-irrelevance principle. _

The situation seems different for the cardinal principle. Young children often
repeat the last numeron in a count (Gelman & Gallistel, 1978), and they are able
to detect when a puppet fails to do so (Gelman, Meck, & Merkin, 1986).
However, such last-word responding may be a rote procedure acquired by
imitation. Young children fail to relate “how many” questions to previous
counting (Fuson & Hall, 1983), and they do not spontaneously count when asked
to give a specified number of items (Schaeffer, Eggleston, & Scott, 1974; Wynn,
1990). In such tasks, appropriate understanding of cardinality seems to emerge at
only 31 years of age (Wynn, 1990).

Finally, as regards the abstraction principle, young children readily count
heterogeneous sets of items, comprising, for instance, animate as well as inani-
mate objects (e.g., Fuson, Pergament, & Lyons, 1985; Gelman & Tucker, 1975).
They can even count actions or sounds, although somewhat less accurately
(Wynn, 1990). However, Shipley and Shepperson (1990) showed that children are
extremely reluctant to count as only one item an object that is broken in two
parts. Children also fail at counting kinds (how many kinds of animals?) or
properties (how many colours?) when each is represented more than once. For
instance, when presented with three dogs and one cat, they will say that there are
four, not two, kinds of animals. The abstraction principle may therefore not be
fully operative initially, and counting seems strongly biased towards discrete
physical objects (Shipley & Shepperson, 1990).

Is subitizing different from counting?

Animal evidence suggests that counting does not have to be verbal. Surprisingly
even in human adults, the identification of verbal counting sometimes proves
elusive. In experiments with timed numerosity judgments, adult subjects are
asked to determine, as fast and accurately as possible, how many items are
presented in a display. Simple counting would appear to predict that response
time should increase linearly with the numerosity of the display. However, such a
pattern is found only over a limited range of numerosities. For instance, Mandler
and Shebo (1982) found that with a 200-ms presentation time, numerosity
judgment latencies increased linearly by about 300 ms per item only over the
range 4-6. For numerosities 1-3, response times (RTs) were fast and increased
only moderately with the number of items. And for numerosities larger than 7,

*Baroody (1984b) questioned the implications of this study, showing that children believe that
counting in two different orders may yield two different results. However, according to Gelman,
Meck, and Merkin (1986), Baroody's children gave two different numbers on the two different counts
because they interpreted the experimenter’s query as meaning that their initial response was false.
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RTs were approximately constant, but accuracy dropped severely (Figure 1). This
pattern suggested that counting was used only in the range 4-6. The term
“subitizing”* was coined for the process responsible for fast responses to small
numerosities (Kaufman, Lord, Reese, & Volkmann, 1949), and the term “estima-
tion” for the less accurate process used preferentially with large numerosities.

The existence of subitizing and estimation processes distinct from counting
remains a highly controversial issue. Subitizing remains defined merely as “a
somewhat mysterious but very rapid and accurate ‘perceptual’ method” (Beck-
with & Restle, 1966, p. 443), and is therefore criticized for lacking a precise
theoretical characterization. Gallistel and Gelman (1991, this issue) defend the
radical view that subitizing is nothing more than counting at a fast rate using
non-verbal numerons. Dwelling on Meck and Church’s (1983) model for animal
counting, they propose that human infants and adults possess a similar fast but
inaccurate counting method. Because the variability of the count increases in
proportion with numerosity, accurate naming is feasible only over a small range of
numerosities, say from 1 to 4. Even over this “subitizing” range, RT is expected
to increase with numerosity, albeit at a low rate. Such an increase from 1 to 2 and
- from 2 to 3 is indeed experimentally observed (e.g., Chi & Klahr, 1975; Mandler
& Shebo, 1982).°

Subitizing by recognition of canonical configurations

Mandler and Shebo (1982) have outlined an alternative subitizing model based on
the recognition of canonical configurations of visual items. In visual displays with
a constant but small number of items, the disposition of objects necessarily forms
invariant or canonical spatial configurations which may be recognized in parallel:
one=a dot, two =a line, three =a triangle. Our visual system may recognize
“threeness” in a triangular configuration, whatever the exact nature and arrange-
ment of the constituent objects, just as it can recognize a cow regardless of
viewpoint, size, colour, etc.

*Confusingly, the meaning of the word “subitizing™ has shifted over the years. Initial studies of fast
quantification (e.g., Taves, 1941; Kaufman, Lord, Reese & Volkmann, 1949) suggested the existence
of two mechanisms: one for numerosities up to 7, the other for larger numerosities. The first
mechanism was named subitizing. Later, however, a second distinction was introduced. Fast and
almost flat RTs were obtained over ranges 1-3 or 1-4; for larger numerosities RTs increased linearly
at a much steeper rate, suggesting the use of counting (e.g., Chi & Klahr, 1975; Mandler & Shebo,
1982). The previously reported limit of 6 or 7 on accurate quantification was not always replicable and
varied with the duration of presentation of the displays (Averbach, 1963). It was thus thought merely
to reflect the number of “discrete events [that] can be held in consciousness and counted™ (Mandler &
Shebo, 1982, p. 18; Miller, 1956). Thereafter, the term subitizing was used, as in the present article, to
refer only to the fast process operating over the range 1-3 or 1-4.

*Sagi and Julesz (1985) reported a high and constant quantification performance in tachiscopic
presentation of sets of 1-3 items, but this result failed to be replicated (Folk, Egeth, & Kwak, 1988).
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Capacity and limits of the subitizing and estimation procedures. (A) Eusily subttized sets.
Three non-overlapping objects usually form a recognizable triangular configuration. (B)
Sets for which subitizing by recognition of canonical configurations is impossible in
principle. Ts do not pop out from Ls, hence their configuration cannot be recogmzed in
parallel. Overlapping transparent shapes, as well as tangled shapes, do not occupy well-
specified spatial locations which could form a recognizable configuration (C) Sets that are
preferentially quantified using an estimation procedure. Under rapid viewing conditions,
random sets (left) are systematically underestimated whereas regular sets (right) are generally
overestimated (this effect may not obtain under free-viewing conditions). Both sets actually
contain 37 items. VLU o T
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Even allowing for very powerful shajﬁe recognition processes, no visual system
could possibly recognize a unique’ configuration for “ten-ness” that would be
present in-all displays with ten items. If only linear operations are permitted
(image translation, rotation, projection and size deformation), then simple mathe-
matical arguments predict that only configurations of 1, 2 or 3 objects can be
recognized.® The special case of 4 might also be handled since it might be coded
with only two canonical configurations (a square or a triangle with a dot inside).

(254

"F_or_instance, only for n =3 can any 2-dimensional configuration of n points be obtained by linear
deformation of a single canonical 2-dimensional figure (e.g., an equilateral triangle for # =3).
Similarly, only for n <3 can any 2-dimensional configuration of n points be obtained by projection on
the plane of a single 3-dimensional configuration of n points.

v
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This predicted subitizing range of 3 or 4 items is of course in excellent agreement
with the experimental data (e.g., Chi & Klahr, 1975; Mandler & Shebo, 1982; see
Figure 1). Additionally, the cost of bringing a visual pattern in register with its
canonical configuration should increase with numerosity. Less image processing is
presumably needed to recognize a single dot than to recognize a triangle in a
random configuration of three dots. Therefore, like preverbal counting, the model
correctly predicts that naming time should increase moderately with numerosity
over the range 1-3.
The canonical configuration model predicts flat naming times when the patterns
presented coincide with memorized canonical configurations. Mandler and Shebo
(1982) ran a condition in which all sets of three dots were arranged in the form of
\'an equilateral triangle, all sets of four dots in the form of a square, and so on.

RTs were then found to be absolutely flat over the range 1-5. Over the range
1-3, RTs to canonical displays were not significantly different from RTs to
randomly arranged displays, which Mandler and Shebo took to imply that
recognition of canonical configurations was indeed normally employed over this
range only.

Other data confirm that subitizing taxes low-level, preattentive visual recogni-
tion processes. First, subitizing occurs only when the visual items “pop out”
effortlessly from the background, but not when serial attentive processing is
necessary to isolate the targets; for instance, in a situation of feature conjunctions
(Trick & Pylyshyn, 1989) or when counting letters “O” among distractor letters
“Q” (Trick & Pylyshyn, 1988). Second, subitizing seems to operate only above
some minimal inter-item separation. Atkinson, Campbell, and Francis (1976)
have shown that the numerosity limit at which quantification becomes slow and
erroneous drops from 4 to 2 if the interval between dots in a linear array drops
under 0.05 degrees of visual angle (still an easily resolved separation). Finally, the
subitized items must occupy distinct and rapidly identifiable positions in space.
Concentric rectangles, for instance, cannot be subitized (Trick & Pylyshyn, 1988;
see Figure 2B).

Non-geometrical models of subitizing

Despite this experimental support, the canonical configuration model faces one
severe difficulty. Fast naming times indicative of subitizing are observed even in
experiments in which the existence of geometrical configurations is dubious, for
instance when the items are arranged in a single line (e.g., Atkinson, Francis &
Campbell, 1976). To accommodate this fact, one may extend the definition of a
canonical configuration to include, for instance, “line of 3 points” as a recogniz-
able visual object. Alternatively one may postulate that the ill-specified visual
normalization processes are able to recognize a potential triangle in a line of 3
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dots. Both solutions seem to beg the question of subitizing since they do not
explain why such powerful object recogmtlon is not available for numerosities
higher than 4 or 5. '

Some authors have suggested that the information accessed during subitizing is
not geometric but more abstract. According to Trick and Pylyshyn (1988, p. 1),
“subitizing and counting are side effects of the way the visual system is built:
there is a parallel (preattentive) stage and a spatially serial (attentive) stage”.
Trick and Pylyshyn.(1988, 1989, 1991) postulate a limited number of spatial
indexes called FINSTs (FINgers of INSTantiation) that automatically bind to each
visual object and render it available to attention-requiring visual routines (Ull-
man, 1984), In subitizing, subjects would simply report the number of FINSTs
currently bound to visual objects.-In this model, however, the 3—4 limit on
subitizing is not really explained. It is supposedly determined by the number of
FINSTs, which is in itself an arbitrary parameter. Furthermore, the critical stage
of, affectation of one and only one FINST to each object is left unspecified.
Solving this complex problem by a parallel algorithm may not be feasible. But if
FINST binding is mediated 'by a fast serial mechanism, the model becomes
equivalent to Gallistel and Gelmans (1991 this issue) preverbal counting hy-
pothesis. Tt T e

Other authors have suggested that submzmg is not an independent procedure,
but merely reflects:the:application of a general estimation process to small
numerosities. In one or two seconds, adults can estimate the numerosity of a set
of up to several hundreds of dots v(Ginsburg, 1976, 1978; Indow & Ida, 1977;
Kaufman et al., 1949; Krueger, 1972, 1982; Mandler & Shebo, 1982; Minturn &
Reese, 1951; Taves, 1941). Estimation variability smoothly increases with larger
numerosities (Krueger,-1982). For instance, detecting a difference of 1 between
two numerosities is easier with small numerosities (e.g., 5 vs. 6) than with large
ones (e.g., 8 vs. 9; sce Buckley & Gillman; 1974; van Oeffelen & Vos, 1982).
Possibly over the range 1-4, variability in the internal representation of estimated
numerosities is so low that these numerosities can easily be separated (Averbach,
1963; van Oeffelen & Vos, 1982). Thus, the “subitizing range” would simply be
the range over which estimation is sufficiently precise to yield a unique candidate
numeral. This range need not be constant, but may vary with the type and
discriminability of the displays, shattering the hypothesm of a subitizing process
specific to sets of up to 3 or 4 items.

Detailed mathematical models of numerosity estimation have been proposed
(e.g., Allik & Tuulmets, 1991; van Oeffelen & Vos, 1982; Vos, van OQeffelen,
Tibosch, & Allik,;1988). Numerosity may be evaluated as a simple relation

"Incidentally, this form of Weber's law is strikingly similar to that observed in animal “counting”
experiments (Gallistel & Gelman, this issue; Meck & Church, 1983). Could it be that the human
“estimation’ algorithm is essentially identical to the “counting” algorithm that rats and pigeons use? If
that is the case, then a consistent terminology should be adopted.

. 5
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between physical quantities, for instance the product of the visual area by the
density of the items. Various numerosity illusions can be explained by a mis-
perception of the area occupied by the visual items (Allik & Tuulmets, 1991;
Bevan & Turner, 1964; Frith & Frith, 1972; Vos et al., 1988). Cuneo (1982) has
further proposed that children and perhaps even adults use an incorrect Area +
Density rule instead of the correct Area X Density rule. This may explain the
frequent undershooting observed in numerosity estimation {Ginsburg, 1976, 1978;
Indow & Ida, 1977; Kaufman et al., 1949; Krueger, 1972, 1982; Mandler &
Shebo, 1982; Minturn & Reese, 1951; Taves, 1941). Thus the estimation model
may account for several facts outside of subitizing per se.

Do infants subitize?

The adult data just reviewed do not allow us to firmly evaluate the many models
of subitizing that have been proposed. Infant research, however, has recently
brought more light to bear on the issue. In the first year of life, well before they
learn to count, infants can discriminate sets of simultaneously presented objects
on the basis of numerosity (Antell & Keating, 1983; Starkey & Cooper, 1980;
Strauss & Curtis, 1981; Treiber & Wilcox, 1984; van Loosbroek & Smitsman,
1990). Infant results are grossly congruent with the 3—4 limit for fast apprehension
of numerosity in adults. Even 4-day-old infants discriminate 1-object versus
2-object displays and 2-object versus 3-object displays. Discrimination seems less
replicable for displays of 3 versus 4 and 4 versus 5, and it systematically fails for 4
versus 6. In addition, 4-day-old infants discriminate bisyllabic from trisyllabic
words in the auditory modality (Bijeljac-Babic, Bertoncini, & Mehler, 1991), and
around 6 months of age they discriminate the sequential presentation of 2 versus 3
visual objects (Davis & Ashmead, 1991).

Recognition of canonical patterns is hardly feasible with sequential visual or
auditory stimuli. The data suggest that infants use a form of approximate covert
counting, as proposed by Gallistel and Gelman (1991, this issue). This conclusion
is also supported by cross-modal studies: 6-8-month-old infants can detect
numerical correspondences between the visual and auditory modalities (Moore,
Benenson, Reznick, Peterson, & Kagan, 1987%; Starkey, Spelke, & Gelman,
1983, 1990). When infants hear three drum beats, they look reliably longer at a
visual display with three objects than at a simultaneously presented visual display
with two objects. Conversely, they preferentially look at the 2-object display
when hearing two drumbeats. In another experiment, 6-9-month-old infants were
initially familiarized with several displays, always comprised of either two or three

®Moore et al. (1987) presented their results as a failure to replicate Starkey et al’s (1983)
experiment. Starkey et al. (1990), however, reanalysed the Moore et al.’s data and convincingly
argued that cross-modal matching of numerical information was present in their experiment too.

Soa 9y .
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objects. Subsequently, preference was assessed for auditory sequences of two
versus three drumbeats. Infants showed greater interest in the auditory sequence
whose numerosity matched the numerosity that they had been presented during
visual habituation (Starkey et al.,, 1990). The straightforward explanation of
cross-modal numerosity matching, endorsed by Starkey et al. (1983, 1990), is that
infants perceive the relation of one-to-one correspondence between items in the
visual and auditory modalities.

Conclusion ' =1 .
Infant, adult and animal evidence suggests the existence of several quantification
processes specific to the apprehension of numerosity. Children and adults rely
mostly on verbal counting.- However, small numerosities can also be rapidly
subitized, and large numerosities can be approximately estimated. Despite consid-
erable - experimentation and’ modelling,” it is"still not known whether these
subitizing and estimation procedures radically depart from Gelman and Gallistel’s
(1978) definition of counting, or whether they in fact correspond to a form of fast
non-verbal counting. ‘Animal studies éupﬁort Gallistel and Gelman’s (this issue)
assertion that ammals routmely count usmg approx1mate internal quantities for
nNUmerons. ) ) ; i

The intuitive symbohc-processmg model of human numerical cognition must
therefore be supplemented with a number of dedicated non-verbal quantification
processes. However, these quantification processes may only represent alternative
input routes to a central symbolic number processor. The nature of human adult

number representanons is discussed below

e
1. ADULT APPROXIMATION AND PROCESSING OF QUANTITIES

Do adults process numerals using pure]y syntactic devices that are blind to the
quantities to which the numbers refer? Transcoding errors such as “one thousand
nine hundred” written as “10009100” (Deloche & Seron, 1982a), or calculation
errors such as 45+ 8= 1213 (Caramazza & McCloskey, 1987) or 75 — 25 =410
(van Lehn, 1986), certainly suggest that results obtained through erroneous
symbolic processing may be accepted even when they are semantically absurd.
Calculation algorithms are often “applied without awareness of their conceptual
basis” (McCloskey, this issue, p. 152). Of course, symbolic calculation and
transcoding procedures are designed to preserve quantities. For instance, the
string of digits obtained when applying the multiplication algorithm to the
numerals “54” and “67", “3618”, does correspond (hopefully!) to the quantity
which is the product of 54 and 67. But the mathematical principles that warrant
this correspondence are not accessed during calculation.
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In some cases though, adults do show a sensitivity to meaningful numerical
quantities. In this section I argue that tasks such as measurement, comparison of
prices, or approximate calculations, solicit an “‘approximation mode” in which we
access and manipulate a mental model of approximate quantities similar to a
mental “number line” (Dehaene, 1989; Dehaene & Cohen, 1991; Dehaene,
Dupoux, & Mehler, 1990; Gallistel & Gelman, this issue; Restle, 1970). To enter
this putative approximation mode, arabic and verbal numerals are first translated
from their digital or verbal code into a quantity code. The input modality is then
neglected,: and numerical quantities are represented and processed in the same
way as other physical magnitudes like size or weight (analogue encoding). In
parallel, the same numeral may also be processed via the traditional symbolic
transcoding and calculation routines.

»

Quantity versus arabic symbols in number comparison

Perhaps the clearest evidence for a mental representation of numbers as quan-
tities comes from the number comparison task. Moyer and Landauer (1967)
showed that the time to decide which of two numbers is the larger (or the smaller)
smoothly decreases with the numerical distance between them. This distance effect
is identical whether the comparison bears on arabic numerals or whether it bears
on physical parameters such as line length, pitch, or numerosity (Buckley &

. Gillman, 1974; Henmon, 1906). In both cases, response time is a logarithmic

function of the distance (numerical or physical) between the items, and similar
anchor or congruity effects are found (Banks, Fujii, & Kayra-Stuart, 1976;
Dehaene, 1989; Duncan & McFarland, 1980; Jamieson & Petrusic, 1975). Even in
same—different judgments, a distance effect emerges. The time to judge that two
digits are different varies with the numerical distance between them (Duncan &
McFarland, 1980). This suggests that digits are not compared at a symbolic level,
but are initially recoded and compared as quantities.

More recently, further evidence for access to a representation of numerical
quantities was obtained in a task of comparing 2-digit numbers (Dehaene et al.,
1990; Hinrichs, Yurko, & Hu, 1981). Subjects had to decide whether a given
2-digit numeral, say, 59, was larger or smaller than a standard of reference, say
65. If numerals were compared on the basis of their symbolic appearance,
subjects would first compare the decades digits, and then, only if necessary, the
units digits. Thus, it would take the same time to compare 51 and 59 to 65: the
decades 5 and 6 would be compared, and the units would not be taken into
consideration. On the other hand, if the numerals were first converted into a
quantity code, then the quantity codes for 51 and for 59 might be expected to
differ. Because of the distance effect, it would then be faster to compare 51 with
65 than to compare 59 with 65. The latter result was indeed found: units had a

Moy,
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significant effect on comparison times, even when the decades digit sufficed to
respond “‘smaller” or “larger” (Hinrichs et al., 1981). RT was a smooth logarith-
mic function of the numerical distance between the target and the standard, with
little or no discontinuity at decade boundaries. Dehaene et al. (1990) performed a
variety of controls and basically confirmed this result. Their data suggested that
“the digital code of numbers is [first] converted into an internal magnitude code
on an analogical medium termed number line. This encoding stage is fast and
independent of which particular number is coded” (p. 638).° - .

- -7 L P ?

The SNARC effect and rhe orzematzon of the number line =~ *.. v L
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We have recently performed a series of expenments which conﬁrm that arabic
numerals may rapidly and automatically evoke ‘an internal quantity code (De-
haene, Bossini, & Giraux, 1991). Subjects were asked to ]udge the parity (odd vs.
even) of numbers from 0 to 9. The assignment of “odd” and “even” responses to
response keys was varied w1thm subjects, so that for each number subjects
responded using the right- -hand key in one half of the expenment and the
left-hand key in the other half. An interaction of number magnitude with
response key was found. Regardless of their parity, larger numbers yielded faster
responses with the right hand than with the left, and the reverse was true for small
numbers (Figure 3). This was termed lhe SNARC effect (spanal numerlca]
association of response codes). : : (ag ©

A subsequent experiment showed that the SNARC effect is govemed by the
relative magnitude of the numbers within the range of numbers tested. When we
used numbers in the 0-5 range, numbers 4 and 5, which were the largest of the
interval, elicited a faster response with the right hand than with the left. This
pattern reversed when we used numbers in the 4-9 range, where:the same
numbers 4 and 5 were now the smallest of the interval. This experiment ruled out
any explanation based on the absolute characteristics of the digits, for-instance
their visual appearance or their frequency of usage (Dehaene & Mehler, 1992).
Our interpretation is that the presentation of an arabic numeral. elicits an
automatic activation of the appropriate relative magnitude code. This activation
cannot be repressed, even though magnitude information is irrelevant-to the
requested task of parity judgment. Additional data suggest that this activation
persists, but is slower or less automatic, with multi-digit arablc numerals and with
numerals in verbal notation. = owT

The existence of an analogue representatlon for numerical magmtude does not
necessanly lmply the existence of a first-order isomorphism between number and

-("b "

o
*Digit-by-digit numerical comparison does occur with numerals composed of 3 or more digits
(Hinrichs, Berie, & Mosell, 1982; Poltrock & Schwanz 1984} sl
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. Difference of RTs
M~ RT (right key) minus RT (left key)
40
- 20r ' ) faster left response
5D :
1 + . U
20 faster right response
40
0 1 2 3 4 5 6 8 9

‘ Figure 3. The SNARC effect. In a parity judgment task, small arabic numerals are preferentially
responded to with the left hand, and large arabic numerals are preferentially responded to
with the right hand.

any particular physical continuum (Shepard & Chipman, 1970). However, the
SNARC effect does seem to reveal a natural mapping of the numerical continuum
onto the extracorporal physical space. In subsequent experiments, we showed that
the large—right association is identical in left- and right-handers, is not affected by
crossing the subjects’ hands, but is reversed in Iranian subjects who write from
right to left (Dehaene et al., 1991). Our experiments objectify a frequently
encountered intuition that the number line extends horizontally from left to right.
They also mesh well with Seron et al.’s observations (this issue). Seron et al. have
studied 49 normal subjects who experience peculiar visuospatial representations
of number (number-forms). Their introspective number lines, even if curved or
saw-toothed, frequently show a predominant left-to-right orientation. A con-
tinuum might therefore exist between ordinary subjects, who possess an (often
unconscious) mental number line, the left-to-right orientation of which is identifi-
able only indirectly via a SNARC effect, and subjects with visual number forms,
who are visually aware of their number line and show considerable elaboration
around the basic left-to-right pattern.

Is the subjective scale of number compressive?

Another feature of the mental representation of numerical magnitudes, and one
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that is also shared by subjects with visual number forms, is the seemingly
compressive character of the number line. A variety of experiments have indi-
cated that subjective numerical magnitudes obey Weber's law: the same objective
numerical difference seems sub]ectwely smaller, the larger the numbers against
which it is contrasted.'

One’ experimental technique involved asking subjects to produce random
numbers in a given interval (Baird & Noma, 1975; Banks & Coleman, 1981;
Banks & Hill, 1974). Subjects produced more small numbers than larger num-
bers,ra result consistent with the hypothesis that they sampled from a flat
distribution over a compressive number line. Conversely, Banks and Coleman
(1981) had subjects judge how evenly and randomly a sequence of numbers
sampled a given numerical interval. The best sequences were those generated by a
power function with an exponent of 0.35. )

In other experiments, subjects rated individual numbers using verbal category
scales (very small, small, etc.; Birnbaum, 1974; Rosner, 1965), or they rated the
similarity of pairs of numbers (Schneider, Parker, Ostrosky, Stein, & Kanow,
1974; Shepard, Kilpatrick, & Cunningham, 1975). Yet other techniques involved
approximately bissecting numerical intervals (Attneave, 1962) or pairing numbers
with physical stimuli (e.g., Rule, 1969; for review see Krueger, 1989). With the
exception of one study (Rosner, 1965), all of these approaches found a compres-
sive internal representation for numbers. Most experiments relied on off-line
introspective judgments. However, the hypothesis of a Fechnerian encoding of
numerical magnitudes was also found useful in modelling response times in
numerical comparison tasks. Comparison times were better predicted when the
distance ' between the two compared numbers was measured on a logarithmic
rather than on a linear number line ( Buckley & Glllman 1974; Dehaene, 1989;
Movyer & Landauer, 1967). - =

Strikingly " similar results — a compresswe subjective scale, with increasing
similarity among larger numbers — have been found in the visual perception of
numerosity (see the above discussion of numerosity estimation abilities). For
instance; Buckley and Gillman (1974) tested the same subjects in two different
tasks: comparison of visual numerosities versus comparison of arabic digits. The
representations that they obtained using multidimensional scaling were essentially
identical for both types of stimuli (both were compressive). The possibility must
therefore be entertained that a single representation of approximate numerical

'.7I’ . ”
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Two concéptualizations of Weber’s law are possible: (1) the number line is linear, and variability
increases with numencal magnitude; or (2) the number line is a compressive logarithmic or power
function, and variability is constant. The metaphor of a linear number line 1s sometimes preferred
because - it allows for an easier conceptualization of approximate addition and subtraction by
juxtaposition of line segments {Restle, 1970; Gibbon & Church, 1981). However, it should be

recognized that from a functional point of view the two metaphors are strictly equivalent.
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quantities, obeying Weber-Fechner’s law, can be accessed either via numerosity
estimation, or via transcoding from arabic notation.

. To'some readers, the above arguments may sound absurd. Teghtsoonian and
Teghtsoonian (1989) noted that if the “subjective scale of number’ is a power law

. with exponent 0.5, as postulated by Krueger (1989), then 40 should seem only

twice as large as 10! For Laming (1989), “the notion of a subjective scale of

- number is a contradiction in terms” (p. 279). But then what, if anything, did the

above experiments measure? The paradoxes disappear if one accepts the exist-
ence of two largely distinct modes of number processing: one based on a symbolic
code, and the other on a quantity code. Of course, numbers gqua symbols enter
into objective relations, and to talk of a subjective scale of number is absurd.
However, if nﬁ[nbefs can be transformed into a mental representation of quan-
tities, and thereafter be treated just like other physical quantities, then it is no
more absurd to talk of a subjective scale of numerical magnitude than to talk of
subjective scales of weight, area, etc. The ingenuity of the above “psycho-

- physical” éxperiments is to prevent, in some way or another, the use of exact

g “

digital algorithms, and therefore to probe only the analogical quantity code. An

© internal validation is that when this dissociation is done properly, the results

converge to support a compressive internal representation of quantities.

Two dissociable number-processing pathways

Given the postulation of two largely distinct number-processing pathways — one
processing numbers as symbols and the other transducing them into approximate
quantities — one may hope to find their occasional neuropsychological dissociation
in brain-lesioned patients. Warrington (1982) described an acalculic patient who
sometimes failed to retrieve arithmetical facts in addition, subtraction and multi-
plication. Yet this patient always proposed numbers of plausible magnitude. For
instance, when asked to solve 5+ 7 he replied “13 roughly”. Guttmann (1937)
reported a patient (H.Ba.) who may qualify for the converse dissociation. He
knew his multiplication tables and could carry out simple arithmetical calcula-
tions, but he had considerable difficulty with numerosity estimation and number
knowledge.

Dehaene and Cohen (1991) have recently reported a more clearcut dissocia-
tion: the case of a severely aphasic and acalculic patient, N.A.U., who lost all
precise knowledge of numbers and arithmetical operations, but could still trans-
late numerals into approximate numerical quantities and process them as such.
N.A.U. erred even with the simplest of calculations, producing 3 in response to
2+ 2. Likewise, he could not reject 2+2 =35 as false. However, he rapidly
recognized 2 + 2 =9 as incorrect, knowing that 2+ 2 is much smaller than 9. A
similar phenomenon occurred in his memory for numbers. When asked to
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memorize a set of 3 consecutive digits‘ in variable order (e.g., 768), a few seconds
later N.A.U. incorrectly thought that 5 was among the memorized set; however,
he could still reject more distant numbers such as 2.

Apparently, the only knowledge that N.A.U. could access about a number was
its approximate magnitude. Consistent with the hypothesis of a recoding of
numerals into quantities during larger—smaller comparison, N.A,U. was close to
100% correct in comparing 1- and 2-digit numerals, even when he could not read
the stimuli aloud (his only errors occurred when comparing two close quantities,
e.g., 4 and 5). But he was at chance level for judging whether a given digit was
odd or even: His number knowledge was similarly affected. For instance, he
would state that a dozen eggs were 6 or 10, or that a year was made up of about
350 days, again lacking the exact knowledge but preserving the correct order of
magnitude. Finally N.A.U.’s reading difficulties could be interpreted in the same
framework. He ‘was almost totally unable to read letters, words or non-words.
However, he managed approximately to read simple arabic and verbal numerals
by counting on his fingers. For instance, he would read “3” by counting to himself
while raising 3 fingers and then saying “three” out loud. Apparently, upon seeing
a numeral, N.A.U. knew aoproximately where to stop in his recitation of the
preserved canonical counting sequence

Ve e =
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Approximate calculations ~ ° :
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By what mechamsm could N.A. U rap:dly detect the falsehood of additions such
as 2+ 2 =97 Counting or memory retrieval models of normal addition are quite
inadequate for patient N.A.U. because his performance was not affected by the
problem size effect. Contrary to normal subjects, N.A.U. did not respond faster
or err less when the addition operands were small or with tie problems such as
3+3 (Dehaene.& Cohen, 1991). His performance seemed to depend almost
exclusively on the degree of falsehood of the addition. When a grossly false result
was proposed - he responded so rapidly that the use of counting seemed im-
plausible.” .0 o ¢ o

The two characteristics of N.A.U.’s addition performance were, first, that he
could apparently only compute an approx1mate result, and second, that the

r \:f

"Interestingly, Monn, DeRosa and Stultz (1967) report a similar effect in normal subjects. The
task was to memorize a set of digits, and then to decide 1f a probe digit was present or absent from the
memorized set, “Absent” RTs decreased with the numerical distance separating the probe digit from
the set. DeRosa and Morin (1965, cited in Morin et al., 1967) also found a distance effect on
*“present” RTs when the memorized set was made up of conseculive digits (e.g., 34 56): numbers that
were close to the set boundary (i.e., 3 and 6) were classified slower than numbers that were in the
interior of the set (i.c.; 4 and 5). Normal subjects seem able to represent a memorized set on their
number line, and to use proximity rélations on this representation to verify if a probe digit belongs to
the set ornot. ~ 7
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precision of his approximation decreased with larger numbers. For instance he
would classify 43+ 21 =69 as correct, but not 3+ 1=9. These findings are well
captured by an analogical model of mental addition outlined by Restle (1970;
Gallistel & Gelman, this issue). Restle proposed that addition operands are first
encoded as line segments on a mental “number line”. The segments are then
juxtaposed mentally to obtain the result. Working with segment lengths instead of
arabic digits introduces an inherent imprecision in processing, which may explain
that N.A.U. could only activate a candidate set of plausible results, not the exact
one. The further supposition that the segment lengths follow Weber’s law may
explain that the larger the operands, the coarser the precision of N.A.U.’s
addition approximation.

- When normal subjects verify an addition, a split effect is observed: the more
distant the proposed result from the correct result, the faster subjects classify the
addition as incorrect (Ashcraft & Battaglia, 1978; Ashcraft & Stazyk, 1981;
Krueger & Hallford, 1984; Zbrodoff & Logan, 1990). This distance effect bears a
definite similarity with patient N.A.U.’s response pattern. The split effect in

" normals might perhaps reflect a post hoc comparison of the result computed by

the subject with that proposed by the experimenter. In some cases, however,

~ responses to grossly incorrect additions are much faster than responses to correct

* ones. It thus seems unlikely that subjects had enough time to complete the exact

calculation (Ashcraft & Stazyk, 1981; Zbrodoff & Logan, 1990). For Ashcraft and

Stazyk (1981, p. 185), such evidence is “‘suggestive of a global evaluation process

operating in parallel with [arithmetic fact] retrieval”. Further research is needed

to ascertain whether this global evaluvation is identical to patient N.A.U.’s
preserved approximate addition routine.

Availability of a magnitude representation in children and animals

I have argued that some human numerical abilities, including comparison’ and
addition approximation, do not depend on competence for language, but require
access to an analogical representation of numerical quantities. In fact this set of
abilities seems to coincide exactly with the numerical competence of preverbal
children and animals, thereby strengthening the conclusion that they constitute a
separate preverbal system of arithmetical reasoning (Gallistel & Gelman, this
issue). The ability to select the larger of two numerosities appears in children
around 14 months of age (Cooper, 1984; Sophian & Adams, 1987; Strauss &
Curtis, 1984), and the distance effect in numerical comparison is present from 6
years of age, the earliest age at which it has been tested (Duncan & McFarland,
1980; Sekuler & Mierkiewicz, 1977). Numerical comparison can be taught to
animals (e.g., Rumbaugh, Savage-Rumbaugh, & Hegel, 1987; Thomas & Chase,
1980; Washburn & Rumbaugh, 1991; see Mitchell et al., 1985, for review), and a
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distance effect is also found.”As in human adults, a distance effect also obtains
when.pigeons or rats are taught to discriminate two numerosities (Gallistel,
1990): discrimination is easier when the distance between the two numerosities is
larger, thus suggesting access to an analogue representation of quantities.

Addition approximation has been much less studied, but preliminary data
suggest that young children know that adding to a small set of items will augment
its numerosity, even when they do not know exactly by how much (e.g., Cooper,
1984; Gelman & Tucker, 1975). In animals, the outstanding work of Rumbaugh
et al. (1987) shows that chimpanzees can add two numerosities a and b, two other
numerosities ¢ and d, and choose the larger of the two quantities a + b versus
c+d (see also Woodruff & Premack 1981) The addition is only approximate,
since animals have more dlfﬁculty when the sums fall close to each other (e.g.,
1+4 vs. 3+3). It is striking that the abilities evident in animals and young
children coincide with those that remain accessible even to deeply aphasic and
acalculic human adults (Assal & Jacot-Descombes, 1984; Barbizet, Bindefeld,
Moaty, & Le Goff, 1967;- Dehaene & Cohen, 1991; Warrington, 1982). This
supports the ontogenetic and phylogenetic prccedence and modularity of numeri-
cal approx1mat|0n faculties. - B

- . T

Iv. GENERAL ARCHITECTURES FOR NUMBER PROCESSING

Three domams of numencal competence have - been described: transcoding/
calculatmg, quantification, and’ approx1mat10n Each of these domains includes
several specific subprocesses such'as smultiplication, number comparison, or
subitizing, which in some cases have been shown to dissociate in brain-lesioned
patients. A primary issue therefore concerns the general architecture in which
these subsystems are integrated. Although this problem has rarely been consid-
ered in full generality, there have been several proposals. I shall briefly review
them, and then attempt to sketch a synthesis. = = .~
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Three theoretical views on the human number processing system

Zx i oy E
McCloskey (this issue) presents an integrated view of the interrelations between
the various modules for number productlon comprehensmn and calculation. His
model assumes that all numerical inputs are initially translated, via notation-
specific comprehension modules, into an amodal abstract representation of num-
bers. Conversely, number production involves a translation from the abstract
internal representation to the desired output notation via notation-specific pro-
duction modules. Finally, mental calculations are performed on the amodal

representation, never directly on numerals in arabic or verbal notation (see Figure

J¥



28 8. Dehaene 5,

4). The hypothesis that the amodal representation is an obligatory bottleneck in
number processing yields strong predictions. For instance, if, on the basis of
reading errors, a deficit in arabic numeral comprehension is identified in a
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Figure 4. Three schematic models for the architecture of the human number-processing system.
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brain-lesioned patient, one may predict that the deficit will extend to any task
involving arabic inputs (e.g., numerical comparison, mental calculation). So far,
this model has been extremely successful in classifying patients and in predicting
their performance.

Several models have explicitly rejected McCloskey’s hypothesis of a pivotal
abstract number representation (Figure 4). Deloche and Seron (1982a, 1982b,
1987) have repeatedly argued for the possibility of asemantic transcoding, that is,
direct translatio_h between arabic and verbal notations without going through an
intermediate semantic representation. Recently Noel and Seron (1992) have
offered a preferred entry code hypothesis according to which abstract knowledge
and calculation procedures are accessed via a unique notation, to which all the
numerals are initially transcoded. Noel and Seron postulate that their patient NR
transcodes'_ all numerals into a verbal code through which he then accesses his
number-related knowledge and a representation of quantity. The hypothesis of a
verbal pivotal representation for numbers is also supported by the anecdotal
observation that bilinguals prefer to perform calculations in the language in which
they acquired and practised arithmetic facts (Kolers, 1968).

Conversely, to account for the performance of their patient YM, Cohen and
Dehaene (1991) postulate the existence of a visual workbench or visual number
form encoding numbers in arabic notation, which constitutes “an input stage
common.to any task involving number manipulations, including reading, mag-
nitude comparison, calculation, etc.” (p. 54). According to this view, the
representation used in calculation is not abstract, but is similar to a visual image
of the arranééhent of the processed digits (Hayes, 1973; see also the patient
described in Weddell & Davidoff, 1991).

Noel and Seron (1992) note that, just as prodigious calculators can be divided
into auditory and visual types (Binet, 1894/1981), the preferred entry code may
vary from individual to individual. Idiosyncratic variability would explain the
elusiveness and the controversial nature of the number representation debate. A
last possibility, termed the interactive model in Figure 4, is that all numerical
codes are interconnected and that number knowledge can be accessed through
any of these codes. Campbell and Clark (1988, 1992) have proposed an encoding
complex . model .according to which numbers evoke “an integrated network of
format-specific number codes and processes that collectively mediate number
comprehension, calculation, and production, without the assumption of central
abstract._representation™ (p. 204). Arithmetic operations such as additions or
number comparisons may then be performed qualitatively differently depending
on the input’ format of the operands (Besner & Coltheart, 1979; Gonzalez &
Kolers, 1982, 1987; Takahashi & Green, 1983). The evidence supporting the
interac'ti‘ire‘vie'w is, however, still inconclusive (for discussion see McCloskey, this
issue). ..v 7 -

3
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A triple-code model for numerical cognition

In the above models, adult transcoding and calculation tasks are considered the
* primary source of data. Quantification, number comparison or approximation
tasks are generally not modelled in any detail. As a result the models excel in
describing the syntactic processes for manipulating number notations, but do not
" begin to describe the semantics of number concepts. For instance, the box
labelled “‘semantic representation” in McCloskey et al.’s (1986) model actually
encodes numbers in a format very similar to arabic notation. Campbell and
Clark’s (1988, 1992) notion of a widespread activation of number facts in various
codes seems better able to capture the richness of information that numbers can

" evoke (quantity, parity, etc.). However, McCloskey (this issue) rightfully empha-
~ sizes the underspecification of this idea.

The remainder of this paper, necessarily more speculative that the previous
~ sections, is dedicated to a presentation of my own view of the human number-
processing architecture. The proposed triple-code model is sketched in Figure 5.
This model can be viewed as an attempt to reconcile Campbell and Clark’s
multiple-codes hypothesis with a rigorous information-processing model. It is
based on two premises:

Premise 1: numbers may be represented mentally in three different codes. In the
auditory verbal code or auditory verbal word frame, which is created and
manipulated using generai-purpose language modules, an analogue of a word
sequence (e.g., /six//hundred/) is mentaily manipulated. In the visual arabic code
or visual arabic number form, numbers are manipulated in arabic format on a
spatially extended representational medium (Hayes, 1973). In the analogue
magnitude code, numerical quantities are represented as inherently variable
distributions of activation over an oriented analogical number line obeying
Weber-Fechner'’s law (Restle, 1970; Dehaene, 1989; Dehaene et al., 1990).
Each representation is directly interfaced by notation-specific input-output
procedures similar to those present in McCloskey’s model. An arabic numeral-
reading procedure categorizes strings of digits for input into the visual arabic
representation (Cohen & Dehaene, 1991). Conversely, an arabic numeral-writing
procedure converts the internal arabic code into a motor program of writing
gestures. Similar auditory input, spoken output, written input and written output
procedures interface with the auditory verbal representation.'” These procedures
are not specific to numbers and also take part in the production and comprehen-

"An orthographic word frame might be involved in the manipulation of numerals in the written
verbal format. For simplicity, however, I shall assume that written verbal numerals are parasitic on the
auditory verbal system and have no direct transcoding links to other number representations.
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Figure 5. Schemanc representation of the proposed triple-code model. The three cardinal representa-
nons are depicted as octogons. Large arrows indicate input-output processes, thin arrows
internal translation processes, and flashes operations specific to each representation The
diagram only sketches the modes of connections between various processes, several of which
could be further analysed into subcomponents (e.g., counting, arabic-to-verbal translation).

sion of oral and written language. Finally and more speculatively, the analogue
magnitude representation is also assumed to receive direct input from dedicated
visual numerosity estimation and subitizing procedures. This hypothesis is consis-
tent with data suggesting similar Fechnerian psychophysical functions for visually
perceived numerosity and for numerical quantity as conveyed by arabic numerals
(see section III).

Communication between the three cardinal representations is achieved by
dedicated translation paths marked by letters A, B, C, D, C' and D’ in Figure 5.
The arabic-to-verbal translation path (A) constructs the word sequence corre-
sponding to a given arabic numeral. Despite its representation as a simple arrow,
this is actually a complex process which involves separate steps of syntactic
composition and lexical retrieval (Deloche & Seron, 1987; McCloskey et al.,
1986). The reader is referred to Cohen and Dehaene (1991) for a detailed model
of this asemantic arabic-to-verbal translation procedure, compatible with the
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current neuropsychological literature."> The converse verbal-to-arabic translation
path (B} has been studied and modelled by Deloche and Seron (1982a, 1982b,
1987). Paths C and C’ allow access to the quantity code from arabic and verbal
notation:”.'l'hey work by approximating the input numeral (e.g., extracting its
highest power of ten) and activating the corresponding portion of the number
line. Conversely, paths D and D’ retrieve approximately appropriate number
names for a given quantity code. They presumably function by categorization of
the number line continuum into segments of different lengths, each being assigned
a specific arabic or verbal label (Dehacne & Mehler, 1992).

Two clarifications are in order. First, the translation paths to and from the
magnitude representation are postulated to work only approximately and without
any syntactic sophistication. For instance, path D’ (magnitude-to-verbal transla-
tion) does not contain a replication of the syntactic rules for composing any
well-formed verbal numeral. Rather, it rigidly associates a “‘round” number name
(e.g., “two hundred”) to a given quantity by consulting its limited lexicon. For a
more precise labelling of quantities (e.g., “two hundred and twelve”), verbal
counting is required, which is a sophisticated coordination of the verbal number
representation with pointing or other object tagging procedures. The second point
is that the coexistence of routes C/D and routes C'/D’ is left open in the model.
It is an empirical question whether direct transcoding to and from the magnitude
representation is possible for both arabic and verbal notations, or whether there is
a privileged notation, say arabic, for accessing the magnitude code. In the latter
case, the magnitude of verbal numerals should not be accessible without an
intermediate translation into arabic notation, and this should have measurable
effects on reaction time.

Premise 2: each numerical procedure is tied to a specific input and output code.
Each number-related task, however complex, can be decomposed into a sequence
of component processes, each requiring a specific numerical format for input. The
format in which numbers are manipulated must be assessed separately for each
subcomponent of a task. This premise is in radical disagreement with McCloskey's

“The analytical arabic-to-verbal route, which can translate any arabic numeral to verbal notation
using a complex syntactic algorithm, is perhaps supplemented by a more direct lexical route
(McCloskey, this issue) storing frequently used arabic-to-verbal correspondences (Dehaene & Mehler,
1992). We have recently studied a patient whose performance suggests impaired analytical processing
but spared lexical access in arabic numeral reading (Dehaene & Cohen, unpublished data). Patient
AND was presented with 49 arabic numerals that were considered likely to be lexicahized (L numerals;
e.g., 0-19, decades 20-90, famous dates, brands of cars. . .), and 48 other numerals (NL numerals;
e.g., 21, 109, 710). He read 67.4% (33/49) of L numerals and only 16.7% (8/48) of NL numerals (x*
(1d.£)=255, p<.0001). In our list, L numerals generally had a simpler structure than NL numerals.
However, AND proved able to read relatively complex numerals in the L set (e.g., 75, 250, 1789), but
not relatively simple numerals in the NL set (e.g., 22, 130, 801). With some L numerals that he was
not able to read, AND made semantic paraphasias indicating that lexical access had occurred (e.g., he
knew that 205 and 305 were brands of cars, or 421 the name of a game).
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(this issue) hypothesis of a unique amodal representation. It is more in line with
Campbell and Clark’s (1988, 1992} encoding complex model, but not with their
view that “the strength of specific code-function combinations may depend on an
individual’s idiosyncratic learning history, culture-specific strategies, and other
factors™ (p. 209; see also Gonzales & Kolers, 1982). The present model is deeply
constrained by (1) limiting the mental codes for numbers to three, and (2)
assigning each process to only one prespecified code.

On the basis of the preceding sections, several code—function assignments can
be proposed (Figure 5). In section III evidence was presented suggesting that in
numerical comparison the arabic input is transformed into an analogue magnitude
code before the comparison can be performed (Moyer & Landauer, 1967;
Dehaene, 1989; Dehaene et al., 1990). In section I we have seen that multi-digit
operations seem to involve the mental manipulation of a spatial image of the
operation in arabic notation (e.g., Ashcraft & Stazyk, 1981; see Dahmen, Hartje,
Biissing, & Sturm, 1982; Hécaen, Angelergues, & Houillier, 1961). Conversely
there is (modest) evidence suggesting that addition and multiplication tables are
stored as verbal associations, and that bilingual subjects access them in the
language that they acquired first (Gonzales & Kolers, 1987; see also Marsk &
Maki, 1976). In Figure 5, I have therefore tentatively linked multi-digit oper-
ations with the visual arabic number form, and arithmetical fact retrieval with the
auditory verbal word frame. A strong ensuing prediction is that subjects must
switch mentally between the two notations in the course of complex calculations.
Such translation operations should introduce a measurable cost in RT.

Finally, access to parity information is postulated to depend exclusively on the
arabic code. The arguments that lead to this conclusion illustrate how empirical
data can be used to constrain the triple-code model. Dehaene et al. (1991)
measured the time to judge if a number was odd or even with a variety of input
notations (arabic notation, normal or mirror-image verbal notation, and even the
East arabic notation used in Iran). Similar response patterns were found in all
cases, with for instance 0 and 1 being slow and the powers of 2 (2, 4, 8) being
fast. This suggested that numerals are converted to a common format before
access to parity information.

Is this common format arabic notation, verbal notation, or an abstract amodal
representation? This was assessed by comparing parity judgment with two-digit
numerals in arabic versus verbal notation. A congruity effect was disclosed with
arabic numerals: responses were faster when both digits of the numeral shared the
same parity (e.g., 24, 17) than when their parities differed (e.g., 14, 27; see
Armstrong, Gleitman, & Gleitman, 1983). We interpreted this result as a kind of
Stroop effect: in teens, for instance, the leftmost digit “1”, because it is odd,
facilitates the correct “odd™ response to “17” and inhibits the correct “even”
response to “14”. However, the same result was obtained with verbal notation:
relative to numerals-“zero” to “nine”, numerals “ten” to “nineteen’” showed a
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facilitation for odd responses and an inhibition for even responses. Naturally the
surface form of French teens numerals does not contain an element which, like
the leftmost “1” in arabic notation, might bias the subject towards the “odd”
response. On the contrary, in the French numerals “dix-sept” (17), “dix-huit”
(18) and ““dix-neuf” (19), the presence of the component word “‘dix” (10) might
have been expected to facilitate the even response; actually the odd response was
facilitated. This observation strongly suggests that verbal numerals were first
translated internally into an arabic code on which parity was then assessed. A cost
compatible with such an int'e/mal translation was indeed observed in RTs."

In section III, evidence from the same parity judgment task also suggested an
automatic acttvation of a magnitude code from arabic notation (path C in Figure
5). The observation of such activations of multiple codes in a task as simple as
. parity judgment argues for the heuristic value of the triple-code model.

GENERAL CONCLUSION

Modularity is the fundamental concept which emerges from the present review.
According to the proposed model, the ideal of a unique “number concept”, which
motivated Piaget’s (1952) or Frege's (1950) reflections, must give way to a
fractionated set of numerical abilities, among which faculties such as quantifica-
tion, number transcoding, calculation or approximation may be isolated. The
triple-code model clusters these abilities into three groups according to the format
in which numbers are manipulated. First there are those abilities, like verbal
counting or arithmetical fact retrieval, that are parasitic on the general spoken or
written language-processing system, and that use verbal numerical notation. They
tax processes that are not particularly tailored for numbers. Addition and
multiplication tables are just part of a learned lexicon of verbal associations, and
the counting sequence is not different from other automatic series like the
alphabet or month names. In such domains, concurrent breakdown of linguistic
and numerical abilities is predicted in brain-lesioned patients (e.g., Dehaene &
Cohen, 1991; Deloche & Seron, 1984).

Second, there are abilities like multi-digit calculation or parity judgment which
require the mastery of a dedicated positional notation system, for instance, arabic
notation. The invention of this notation and of the accompanying arithmetical
algorithms is clearly contingent on linguistic competence and literacy, and it is
therefore specifically human. Nevertheless, the arabic subsystem in its present
form is entirely dedicated to numerical material, and it may therefore be
conceptualized as separate. Support for this separation can be found in the

“MeCloskey's model might still accommodate this result because its postulated semantic repre-
sentation is similar to arabic notation in having separate slots for each power of ten. For discussion see
Dehaene et al. (1991).
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neuropsychological dissociation of acalculia from aphasia (Guttmann, 1937;
Henschen, 1919) and in the existence of processing disorders for words or letters
but not for arabic numerals (e.g., Anderson, Damasio, & Damasio, 1990).

Finally, the triple-code model considers the abilities to compare and to
approximate numerical quantities as a third separate cluster. These abilities are
present in animals, emerge in infants before the acquisition of language, and are
therefore assumed to constitute a distinct preverbal system of arithmetic reason-
ing (Gallistel & Gelman, this issue). In human adults, the magnitude code plays a
central role in understanding the quantity that a numeral represents and in
checking the meaninpgfﬁlness of calculations. It is the main, and perhaps the only,
“semantic” representation of numbers. Processing numbers approximately via the
analogue route may be the only numerical ability left in aphasic or acalculic
patients who fail completely at manipulating number symbols (Dehaene &
Cohen, 1991). .-

Adult human’numerical cognition can therefore be viewed as a layered
modular architecture, - the preverbal representation of approximate numerical
magnitudes supporting the progressive emergence of language-dependent abilities
such as verbal counting, number transcoding, and symbolic calculation. Although
the current research trend, reviewed in this issue, is to explore the deeper layers,
or the “primitives” of numerical cognition, the alternative direction is likely to
flourish in the" coming years. How do we acquire and represent higher-order
arlthmetlcal concepts "such as parity, divisibility or primality? By what psychologi-

cal processes can the class of numbers be extended from integers to negative
numbers, fractions" (Galliste] & Gelman, this issue), real or even complex
numbers? These largely unexplored questions may soon move from the realm of
phllOSOphy or epistemology to that of cognitive psychology (Kitcher, 1984).
I
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