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Working memory refers to a mental workspace, involved in controlling, regulating, and actively maintaining
relevant information to accomplish complex cognitive tasks (e.g. mathematical processing). Despite the
potential relevance of a relation between working memory and math for understanding developmental and
individual differences in mathematical skills, the nature of this relationship is not well-understood. This
paper reviews four approaches that address the relation of working memory and math: 1) dual task studies
establishing the role of working memory during on-line math performance; 2) individual difference studies
examining working memory in children with math difficulties; 3) studies of working memory as a predictor
of mathematical outcomes; and 4) longitudinal studies of working memory and math. The goal of this review
is to evaluate current information on the nature of the relationship between working memory and math
provided by these four approaches, and to present some of the outstanding questions for future research.
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In their 2005 review LeFevre, DeStefano, Coleman and Shanahan
(2005)noted that althougha connectionbetweenworkingmemory and
mathematical processing has long been proposed the evidence
connecting the two is relatively sparse. Although considerable contro-
versy remains about whether general purpose cognitive processes such
as working memory are causally implicated in mathematical develop-
ment and disabilities (Geary, Hoard, Nugent & Byrd-Craven, 2007
versus Butterworth & Reigosa, 2007), many recent studies support the
notion that working memory is related to and important for
performance on mathematical tasks. This paper reviews evidence
from four types of studies to evaluate the proposed relation of working
memory and mathematics: 1) experimental dual task studies that test
whether specific workingmemory resources are brought to bear during
mathematical processing; 2) individual difference studies that ask
whether working memory problems differentiate children with
difficulties in math from their typically achieving peers; 3) studies
that address whether and how working memory is related to specific
mathematical outcomes and processes in children of different ages and
abilities; and 4) longitudinal studies that ask whether the development
of working memory is related to growth in mathematical skills. This
review evaluates evidence on the relation of working memory and
mathematics provided from these four approaches, and it presents
outstanding questions for future researchwith a particular emphasis on
the application of research to understanding typical and atypical
development of mathematical skills.
What is the basis for proposing that working memory and
mathematical processing are related? Working memory refers to a
mental workspace that is involved in controlling, regulating, and
actively maintaining relevant information to accomplish complex
cognitive tasks (Miyake & Shah, 1999). Mathematical competence
entails a variety of complex skills that encompass somewhat different
conceptual content and procedures (e.g., arithmetic, algebra, and
geometry); problem solving in these domains often involves the
holding of partial information and the processing of new information
to arrive at a solution, which ought to require working memory
resources. This description applies to both early informal mathemat-
ical problem solving in preschool children (Bisanz, Sherman,
Rasmussen, & Ho, 2005) and complex mathematical tasks in older
children and adults, such as multi-step procedures in multi-digit
arithmetic, word problem solving, and numerical estimation (Kintsch
& Greeno, 1985; Siegler & Booth, 2005; Swanson, 2004; Tronsky,
2005). Furthermore, very young children may touch and point to
objects to compensate for their developmentally-limited working
memory skills, which are necessary for representing and updating
quantitative information (Alibali & DiRusso, 1999). Thus, the very
nature of many mathematical tasks would seem to require or at least
be supported by working memory, and this may be relevant when
thinking about both typical and atypical development of mathemat-
ical skills.

Acknowledged relations between working memory and math have
both theoretical and practical relevance. Working memory is not a
componentof themain theories ofmathematical cognition [e.g. Abstract
code model (McCloskey, 1992); Triple-code model (Dehaene, 1992);
Encoding complex model (Campbell & Clarke, 1992)], though some
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conceptual frameworks for mathematical development and disability
do include this construct (e.g., Geary & Hoard, 2005). As such, these
models may be missing an explanatory construct for understanding
not only mathematical performance and individual differences but
also the development and operation of mathematical skills across the
life span (Duverne, Lemaire, & Vandierendonck, 2008; Hecht, 2002;
LeFevre et al., 2005). From an applied perspective, knowing whether
working memory is related to how children learn mathematics and
why some children have difficulties in math may be important for
instructional design. For example, some instructional methods allow
young children to learn new mathematical concepts and procedures
by taking the working memory demands of mathematical tasks
and the strategies children employ in their problem solving into
account (e.g., Case & Okamoto, 1996).

We provide a brief review of working memory models prior to
discussing the relation of workingmemory tomath.Workingmemory
models vary on a number of dimensions, one of which is whether
working memory is a multi-component system composed of
subsystems specialized to handle different kinds of information
(e.g., Baddeley & Hitch, 1974) or is a unitary system that is primarily
involved in attentional control (e.g., Engle, Tuholski, Laughlin, &
Conway, 1999). Baddeley's (Baddeley & Hitch, 1974; Baddeley &
Logie, 1999) multi-component model describes working memory as a
limited capacity central executive system that interacts with a set of
two passive subsystems used for the temporary storage of different
classes of information: the speech-based phonological loop and the
visual–spatial sketchpad. The phonological loop is responsible for the
temporary storage of verbal information; items are held in a
phonological store of limited duration, and the items are maintained
within the store via the process of articulation. The visual–spatial
sketchpad is responsible for the storage of visual–spatial information
over brief periods, and it also plays a key role in the generation and
manipulation of mental images. Both the phonological loop and the
visual–spatial sketchpad are in direct contact with the central
executive, which is considered to be primarily responsible for the
coordinating activity within the cognitive system, but it also devotes
some of its resources to increasing the amount of information that can
be held in the two passive subsystems. This multi-componential
approach allows one to ask questions about the mental code that is
being used in mathematical tasks and whether such codes vary as a
function of the specific mathematical task, skill-level (developmental
and individual differences), and strategy use (LeFevre et al., 2005).

Studies will be reviewed that use this approach to the measure-
ment of workingmemory in relation to math. These studies are of two
types: in experimental dual task studies, participants perform tasks
that draw on the phonological loop, visual–spatial sketchpad, or
central executive resources at the same time as they perform math
tasks. In individual difference and developmental studies, perfor-
mance on measures tapping the phonological loop, the visual–spatial
sketchpad, and the central executive are considered in relation to
mathematical ability/disability or performance on specific mathemat-
ical tasks. In this second type of study, working memory measures
(requiring concurrent storage and processing) are frequently used to
index the central executive capacity of individuals and they are
sometimes contrasted with performance on short-termmemory tasks
in which participants are required to hold small amounts of verbal or
visual–spatial information passively, and then reproduce the infor-
mation in a sequential or untransformed fashion (tapping the
phonological loop and the visual–spatial sketchpad, respectively).

According to a single-capacity or domain general view of working
memory (Engle et al., 1999), variations in working memory across
individuals reflect the capacity of the central executive. Processes that
have been attributed to the central executive include inhibition of
irrelevant information, task switching, information updating, goal
management, and strategic retrieval from long term memory. In this
view, working memory capacity has more to do with the ability to
control and allocate attention during complex cognitive tasks than
with the amount of information that can be stored. Greater working
capacity results from greater attentional control. It is worth noting
that most measures of working memory likely require some
combination of these processes. However, studies that specifically
relate the development of these somewhat distinct executive
processes (e.g., inhibition of irrelevant information, updating, and
attention switching) to mathematical outcomes are also considered in
this review.

1. Experimental investigations of working memory and
mathematical processing

The role of working memory in simple arithmetic or in any
particular cognitive task can be directly examined during on-line
performance using dual task methods. Dual task experiments involve
the performance of a criterion task (e.g., solving simple arithmetic
problems) while simultaneously performing a secondary task (e.g.,
articulating syllables). Secondary tasks are chosen to represent
different components of the proposed working memory system; for
example, verbal tasks, such as articulating “the the the”, tax the
phonological loop (e.g., De Rammelaere, Stuyven, & Vandierendonck,
1999; Hecht, 2002) whereas visual–spatial tasks, such as spatial finger
tapping (e.g., Seitz & Schumann-Hengsteler, 2000), tax the visual–
spatial sketchpad. Performance when the criterion and secondary
tasks are combined is compared to performance when the criterion
task is completed alone. If the criterion and secondary tasks use
overlapping cognitive resources then performance on the criterion
task will get worse as the secondary task becomesmore demanding. It
has been argued that dual task studies provide the most compelling
evidence for the specific processes involved in the task of interest
because they can be used to isolate the roles of the different
components of working memory. This approach has been predomi-
nantly used with typically achieving adults in the investigation of
single-digit and multi-digit arithmetic. We review these studies as
well as the few dual task studies in children.

1.1. Adult studies of single-digit arithmetic

A central executive load interferes with the solution of single-digit
problems across operations (Ashcraft, Donley, Halas, & Vakali, 1992; De
Rammelaere et al., 1999; De Rammelaere, Stuyven, & Vandierendonck,
2001; Hecht, 2002; Lemaire, Abdi, & Fayol, 1996; Seitz & Schumann-
Hengsteler, 2000, 2002). In contrast, whether the phonological loop or
visual–spatial sketchpad is involved in single-digit calculation depends
on the size of the problem, the mathematical operation involved, how
single-digit arithmetic is learned (DeStefano & LeFevre, 2004), and
strategy selection (Hecht, 2002).

The evidence for the role of the phonological loop in addition and
subtraction appears to depend, in large part, not so much on the
operation under consideration, but the strategy used to complete the
computation. Studies that have looked at strategy use report that
phonological load interfereswith performance on trials where counting
strategies are employed (Hecht, 2002; Imbo&Vandierendonck, 2007a).
Whether or not phonological load impairs performance on subtraction
problems also likely depends on strategy use, such as counting down or
transformation (Imbo & Vandierendonck, 2007a; Seyler, Kirk, &
Ashcraft, 2003). For the most part, phonological interference has not
been demonstrated to impair performance on single-digit multiplica-
tion problems, particularly for easy multiplication problems (i.e., both
operands less than five) (De Rammelaere et al., 2001; Seitz &
Schumann-Hengsteler, 2000, 2002), consistent with the notion that
access to permanent information in long-termmemory doesnot require
intervention by the working memory slave systems (Baddeley, 1990,
1996). However, phonological load does interferewith the performance
of single-digit multiplication in Korean speaking university students
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(Lee & Kang, 2002), who may rely on phonological codes when
storing and accessing multiplication facts compared to individuals
taught in other languages (e.g. English and German) (DeStefano &
LeFevre, 2004). Related research suggests that Chinese-speaking
individuals store and access multiplication facts using phonological
codes because of the structure of their language for number and
because of educational factors related to howmultiplication facts are
instructed (LeFevre, Lei, Smith-Chant, &Mullins, 2001; LeFevre & Liu,
1997).

There is a paucity of research examining the role of the visual–
spatial sketchpad in single-digit calculation. Visual–spatial interfer-
ence has been shown to disrupt performance on subtraction (Lee &
Kang, 2002), but not multiplication (Lee & Kang, 2002; Seitz &
Schumann-Hengsteler, 2000). Findingsmay depend on factors such as
the nature of the secondary task; for example, visual–spatial as
opposed to static visual secondary tasks could produce different
findings to the extent that the mental number line that may underlie
aspects of mathematical performance is thought to be an abstract
spatial rather than concrete visual representation (Knops, Thirion,
Hubbard, Michel, & Dehaene, 2009; Zorzi, Priftis, & Umilta, 2002). As
well, participants' adherence to secondary task instructions could
affect findings; unlike verbal secondary tasks that are heard by the
examiner, visual–spatial secondary tasks are often done out of the
examiner's sight (Raghubar, 2009).

1.2. Adult studies of multi-digit arithmetic

Similar to single-digit calculation, multi-digit calculation requires
access to simple arithmetic facts; however, it also necessitates
procedures of incrementing (carrying) or decrementing (borrowing)
across numerical columns. In particular, multi-digit arithmetic
involves maintenance of intermediate sums and management of
carry demands, particularly in dual task studies because multi-digit
arithmetic is done mentally rather than using pencil and paper.
Studies conducted over the past decade suggest that presentation
variables, such as auditory versus visual presentation or horizontal
versus vertical presentation format, and ensuing strategy use
influence which components of working memory are recruited in
problems requiring or not requiring regrouping (i.e., carrying and
borrowing). Many studies suggest that the maintenance of interme-
diate results requires resources from both the central executive and
the phonological loop (reviewed in DeStefano & LeFevre, 2004). Less
work has been done on the visual–spatial sketchpad. What data there
are suggest that the phonological loop may be involved in multi-digit
arithmetic when problems are presented in either auditory or visual
format because individuals may translate the visually presented
information into a phonological code for temporary storage (Noel,
Desert, Aubrun, & Seron, 2001). The visual–spatial sketchpad may be
recruited only when problems are presented visually (e.g., Logie,
Gilhooly, & Wynn, 1994, but see Seitz & Schumann-Hengsteler, 2000
Exp 1).

The central executive is consistently found to be important for the
carry operation in addition (Imbo, Vandierendonck, & De Rammelaere,
2007; Seitz & Schumann-Hengsteler, 2002, but see limited role for
phonological loop in Furst & Hitch, 2000: Exp 2), and in complex
multiplication (Imbo, Vandierendonck, & Vergauwe, 2008; Seitz &
Schumann-Hengsteler, 2000; see limited role for phonological loop in
Seitz & Schumann-Hengsteler, 2002). An increasing role of the central
executive is also implicated across operations as the number of carry or
borrow operations increases and with higher values of the carry (Imbo
et al., 2007, 2008).

In summary, findings from the adult dual task literature highlight
the importance of attending to several factors in order to understand
the connections between working memory and mathematical
performance. In terms of the working memory measures themselves
this includes attending to what the task is measuring (e.g., visual or
spatial interference). In terms of the mathematical tasks this includes
knowing something about problem complexity, instructional and
linguistic factors, and presentation formats, all of which can affect
strategy-use.

1.3. Dual task studies with children

Although dual task research has primarily been conducted with
adults, two studies have investigated the role of working memory in
children's on-line arithmetic performance. McKenzie, Bull, and Gray
(2003) examined the importance of phonological and visual–spatial
codes in simple arithmetic performance at different ages. Younger (6–
7 years old) and older (8–9 years old) children heard arithmetic
problems (containing two or three addends; e.g., 5+7 or 5+7+8),
under three conditions: baseline, phonological interference (recording
of a children's story read in Norwegian), and visual–spatial interfer-
ence (screen displaying a matrix of black and white squares which
randomly change from black to white and vice versa). The younger
children remained largely unaffected by phonological interference, yet
their performance was severely impaired by visual–spatial interfer-
ence (even though the problems were presented aurally) whereas the
older children were affected by phonological interference as well as
visual–spatial interference, though not to the same extent as the
younger children. The younger childrenmay have been relying almost
solely on visual–spatial strategies, but the older children were likely
using a mix of strategies: a primarily verbal approach supplemented
by visual–spatial resources.

Inorder toexamine the contributionof executive resources to simple
arithmetic, including its role in strategy use, Imbo and Vandierendonck
(2007b) assessed children's (4th to 6th grades) solution strategies to
large sum single-digit addition problems (e.g., 8+7) under five
conditions: naming (reading the provided answer from the computer
screen); choice (choosing their own strategies and reporting the
strategy used to get the answer for each problem); and three no-choice
conditions (where they had to use only one strategy for all problems as
provided by the experimenter — retrieval, decomposition, or transfor-
mation). Children solved the addition problems under these five
conditions with and without a dual task requirement, which loaded
the executive component of working memory. The dual task was a
continuous choice reaction time (CRT) task involving presentation of
low and high tones at varying intervals (e.g. 2000 or 2500 ms) forwhich
participants pressed a computer key for high tones and another key for
low tones.

Children required executive working memory resources to solve
large sum addition problems: there was an effect of the dual task even
in the condition where the answer simply had to be named, though
the effect was larger when children had to retrieve the answer from
long-term memory themselves. Of interest are the findings relating
working memory to strategy use. Working memory load did not
appear to influence strategy selection in the choice condition; that is,
children did not change the mix of strategies they brought to bear in
solving the problems in the dual task versus the no dual task
conditions. Developmentally, the effect of working memory load
decreased linearly or showed a tendency to decrease across the grades
on response times for problems solved using retrieval and counting
strategies, but not transformation strategies. Therefore, as children
grow older and are presumably more experienced with solving
addition problems, they become more efficient in the execution of
retrieval and counting strategies resulting in reduced need for
executive resources.

These child dual task studies suggest that central executive
resources are implicated in children's arithmetic performance and
the amount of resources recruited varies with strategy use, much like
it does for adults, as well as with age or experience. It also appears that
visual–spatial working memory may be implicated to a greater extent
in the math performance of younger children who are in the process
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of acquiring basic arithmetic skills (also see Rourke, 1993), but that
with experience, verbal working memory comes to support arithme-
tic performance to a greater extent.

1.4. Conclusions

What does the extensive dual task literature in single- and multi-
digit arithmetic in adults and the few studies of dual task studies in
children tell us about the relation of workingmemory andmath? First,
workingmemory is involved in mathematical performance whether it
is single- or multi-digit arithmetic. Second, more is known about the
role of the phonological loop in arithmetic performance than is known
about the role of the visual–spatial sketchpad. Third, task variables
related to both the secondary working memory task (e.g., visual or
spatial, whether and how the task is being carried out) and the
primary mathematical task (e.g., type and size of operation,
presentation format, and other factors that affect strategy use) are
critically important for understanding the relation of working
memory and math. Interestingly, neuroimaging studies show that
factors, such as presentation format and presentation rate, affect how
the brain processes mathematical information (Simon & Rivera,
2007), which provides converging evidence for the importance of
task- and strategy-related variables in mathematical cognition.
Fourth, sources of individual variation whether they be age/
experience, strategy use, or instructional and language factors may
determine the ways in which different components of working
memory and mathematical performance are related. These are also
recurring themes in the developmental and individual difference
studies reviewed below.

What do these studies not tell us about the relation of working
memory andmath? In contrast tomany developmental and individual
difference studies, dual task studies pay a great deal of attention to the
nature of the working memory task (i.e., none of the secondary tasks
involve number, load may be systematically manipulated) and to the
math measures (i.e., separation of tasks by arithmetic operation,
attention paid to problem size and strategies). Experimentally, these
are strengths of the dual task design. However, the mathematical
tasks that children encounter in everyday math learning and in
studies that relate working memory and math are not of this nature.
For example, most measures of single- and multi-digit arithmetic in
child studies use mixed operation problem sets. Why might this be
important? Different resources may be recruited by different task-
related factors such as single versus mixed operation sets, with the
mixed sets possibly requiring the ability to monitor and switch
between operations. Similarly, multi-digit arithmetic problems are
not often done using mental arithmetic as occurs in dual task
experiments. Pencil and paper arithmetic likely reduces, though does
not eliminate, demands on working memory by allowing the
transcription of partial results. However, there are many situations
in which mental arithmetic is used in everyday contexts, though
approximate as opposed to exact arithmetic may characterizemany of
these situations. In this regard, Kalaman and LeFevre (2007) have
recently found that in adults, verbal working memory is implicated in
both exact and approximate arithmetic (addition of two-digit
numbers), but plays a greater role in exact than approximate
arithmetic. Such findings begin to take into account the types of
mathematical tasks that individuals are called upon to use in everyday
situations and may be relevant when applied to studies of mathe-
matical development and disability.

2. Working memory in children with math difficulties

Individual difference studies are commonly found in the child and
disability literatures and to a much lesser extent in the adult cognitive
literature. The next section reviews individual difference studies that
compare working memory performance in children with and without
difficulties in math. These studies address the relation of working
memory and math by asking whether children at the lower ends of
the distribution in math have co-occurring deficits in working
memory. It has recently been argued that the severity of children's
difficulties in math may be important for understanding underlying
cognitive weaknesses that may impact their mathematical perfor-
mance (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007;
Mazzocco, 2007; but see Fletcher, Lyon, Fuchs, & Barnes, 2007 for a
dimensional view of mathematical abilities and disabilities). Wemake
note of studies where severity seems to matter for interpreting the
relation of working memory and math, but otherwise do not
distinguish between studies with more and less stringent cut-offs
for determining mathematical disability/difficulty. The evidence for
verbal working memory deficits in children with difficulties in math
will be discussed followed by the evidence for deficits in visual–
spatial workingmemory. Readers are referred to Table 1 for details on
the samples and methods used in these studies.

2.1. Verbal working memory and math difficulties

A recent meta-analysis of 28 studies comparing the cognitive
characteristics of children with and without math difficulties suggests
that differences in verbal working memory characterize children with
math difficulties after controlling for effects of several other variables,
such as age, IQ, naming speed, and short-termmemory for words and
digits (Swanson & Jerman, 2006). However, the measures of verbal
working memory often required the use of number information
because some studies combine verbal and numerical working
memory tasks into a composite measure of the central executive
(see Geary, Hoard, Byrd-Craven et al., 2007; Geary, Hoard, Nugent, &
Byrd-Craven, 2008) and other studies use only numerical tasks as
their indicator of verbal working memory (e.g., Geary, Hamson, &
Hoard, 2000; Geary, Hoard, & Hamson, 1999; Landerl, Bevan, &
Butterworth, 2004; Wu et al., 2008). Although working memory tasks
that employ numerical information are considered to tap verbal
working memory, these tasks have also been referred to as domain-
specific (i.e., number-specific) measures of workingmemory (LeFevre
et al., 2005). The two most commonly used numerical working
memory tasks are digit span backward, whereby participants are
presentedwith a sequence of numbers and are asked to reproduce the
sequence in the reverse order of presentation; and counting span,
which involves remembering numbers of counted objects, for
example, counting the yellow dots in a set of yellow and blue dots
for a specified number of sets (typically 2–5), and then recalling the
counts for each set in the correct order. The assumption that
numerical working memory tasks are de facto measures of verbal
workingmemory and that different numerical working memory tasks
provide similar measures of verbal working memory deserves some
scrutiny as discussed below.

Numerical measures of verbal working memory are more frequently
related to math difficulties than are non-numerical measures of working
memory. Studies that have separated verbal workingmemorymeasures
without numerical information (e.g., word span backward) from those
involving number (e.g., digit span backward) have found that the latter,
but not the former distinguish children with difficulties in math
(Passolunghi & Cornoldi, 2008; Passolunghi & Siegel, 2001, 2004).
Furthermore, studies employing verbal working memory tasks, such as
the listening span task (with concurrent language comprehension and
recall) that likely require greater central executive resources than
backwardword spanor digit span tasks donot consistently differentiate
between children with and without math difficulties (Reukhala, 2001;
Siegel & Ryan, 1989; Swanson & Beebe-Frankenberger, 2004; van der
Sluis, van der Leij, & de Jong, 2005 vs. D'Amico & Guarnera, 2005; Fuchs
et al., 2008; Passolunghi & Cornoldi, 2008). The stronger relation
between numerical versus non-numerical measures of verbal working
memory and math is consistent with studies demonstrating the



Table 1
The samples and measures of working memory and math ability studies.

Study Type Control Verbal WM Visual–spatial
WM

Math outcome

Andersson and
Lyxell (2007)

Child, ID Verbal IQa

Nonverbal IQa

Ageb

Readingb

Animal dual task, Counting span, Trail
making (written), Color stroop (inhibition
control), Verbal fluency, Number
matching (general processing speed),
Crossing out (selective attention)

Visual matrix
span, Corsi
block

Math screening test: Magnitude
comparison; number transcoding
(verbal to Arabic); multi-digit addition
and subtraction; written addition
problems; missing number sequence

Berg (2008) Child,
Predictor

Agec

Readingc

Processing speedc

Short term memoryc

Semantic association, Digit sentence
span (Composite)

Visual matrix
span, Corsi
block
(Composite)

WRAT-3 Arithmetic

Bull et al. (1999) Child, ID IQa

Readinga
Wisconsin card sort task Corsi block Group mathematics test: Word

problems (read by experimenter);
single- and multi-digit addition
and subtraction

D'Amico and
Guarnera
(2005)

Child, ID Readingb Listening recall, DS backward, Making
trails (verbal and color)

Static matrices,
Corsi block

ABCA battery (10 subtests) Incl.
mental and written calculation,
number dictation, number
comparison using “<” or “>”

Fuchs et al. (2005) Child,
Predictor

Attentionc

Languagec

Nonverbal problem solvingc

Phonological processingc

Processing speedc

Executive functionc

Intervention effectsc

Listening recall CBM computation, Addition fact
fluency, Subtraction fact fluency,
Concepts/applications, Story
problems, WJ III Calculation,
WJ III Applied problems

Fuchs et al. (2008) Child, ID Listening recall, DS backward Test of computational fluency,
Addition fact fluency, Subtraction
fact fluency, Simple word
problems, Algorithmic word
problems, Complex word problems,

Geary et al.
(2000)

Child, ID IQa,b

Readingb
DS backward WIAT Math reasoning

Geary et al.
(2004)

Child, ID IQa,b Counting span WIAT Math reasoning

Geary, Hoard,
Byrd-Craven,
et al. (2007)

Child, ID, and
Mediator of
performance
on math
cognition
tasks

IQb Listening recall, Counting recall, DS
backward (Composite)

Corsi block,
Mazes memory
(Composite)

WIAT-II-Abbreviated Numerical
operations

Geary et al.
(1999)

Child, ID IQa,b

Readingb
DS backward WIAT Math reasoning

Geary et al.
(2008)

Child, ID IQb Listening recall, Counting recall, DS
backward (Composite)

Corsi block,
Mazes memory
(Composite)

WIAT-II-Abbreviated
Numerical operations

Hitch and McAuley
(1991) (Exp 1)

Child, ID Nonverbal IQb,d

Readingb,d
Counting span Group mathematics test

(see above)
Holmes and Adams
(2006)

Child,
Predictor

Listening recall Mazes memory
task

Age-appropriate assessments
developed measuring: Number
and algebra; Shape, space, and measures;
Handling data; Mental arithmetic

Holmes et al.
(2008)

Child,
Predictor

Static matrices,
Corsi block

Number and algebra; Shape, space,
and measures; Handling data;
Mental arithmetic

Kyttala and Lehto
(2008)

Adolescent,
Predictor

Nonverbal IQc Mental rotation,
Static matrices,
Corsi block

Mathematics test (Finnish)-Total
score and Mental arithmetic,
Geometry, and Word problems
subscores

Landerl et al.
(2004)

Child, ID Nonverbal IQb

Readingb

Agea

DS backward Response latency and accuracy
on computerized simple addition,
subtraction, and multiplication tasks

Mabbot and Bisanz
(2008)

Child, ID DS backward, Operation span WRAT-3 Arithmetic

McLean and Hitch
(1999)

Child, ID Readingb Making trails (written, verbal, color;
switching), Crossing out (selective
attention), Missing item (hold and
manipulate info accessed in LTM)

Static matrices,
Corsi block

Graded arithmetic-mathematics test

Passolunghi and
Cornoldi (2008)

Child, ID Verbal IQd

Aged

Genderd

DS backward, Word span backward,
Listening span comp.

Corsi block
(forward and
backward)

Standardized Italian Arithmetic Battery
(AC-MT): Written calculations, e.g.,
comparisons, decompositions, and
sequencing of complex numbers

Passolunghi and
Siegel (2001)

Child, ID Aged

Genderd

Readingb

Listening recall, Animal dual task,
Listening span comp., Counting span, DS
backward

Standardized Italian mathematics test:
Written arithmetical word problems;
manipulation of Arabic and verbal
numerals
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Table 1 (continued)

Study Type Control Verbal WM Visual–spatial
WM

Math outcome

Passolunghi and
Siegel (2004)

Child, ID Aged

Genderd

Vocabularyd

Reading comprehensionb

Listening recall, Listening span
comp., Counting span, Word span
backward, DS backward

Standardized Italian mathematics test
(see above)

Reukhala (2001) Adolescent,
ID, and
Predictor

Listening recall Mental
rotation, Static
matrices, Corsi
block

Total score on a National
mathematical test including
both mental arithmetic and
paper-and pencil tasks

Rosselli et al.
(2006)

Child, ID Nonverbal IQb

Readingb
DS backward WRAT-3 Arithmetic

Siegel and Ryan
(1989)

Child, ID IQb

Readingb
Listening span comp.,
Counting span

WRAT Arithmetic

Swanson and
Beebe-Frankenberger
(2004)

Child, ID, and
Predictor of
word problem
solving ability

Nonverbal IQa,c

Algorithm knowledgec

Math calculationc

Readingc

Semantic processingc

Inhibitionc

Speedc

Phonological processingc

Agec

Short-term memoryc

Listening recall, Semantic
association, Digit sentence
span, DS backward

Visual matrix
span, Mapping
and directions

WISC-III Arithmetic

Temple and
Sherwood
(2002)

Child, ID Verbal IQd

Aged
DS backward Corsi block WOND

van der Sluis
et al. (2005)

Child, ID Nonverbal IQb

Readingb
DS backward, Listening span
comp., Counting span

Static matrices,
Corsi block

Arithmetic tempo test contains
3 timed subtests: addition,
subtraction, and multiplication

Wilson and
Swanson (2001)

Child and
Adult,
Predictor

Agec

Genderc

Readingb,c

Story retelling, Semantic
association (Composite)

Visual matrix
span, Mapping
and directions
(Composite)

WRAT-R Arithmetic

Wu et al. (2008) Child, ID and
Predictor of
strategy use in
simple
arithmetic

IQb Counting span, DS backward Corsi block WIAT Math composite

Note: ID= Individual difference; DS backward = Digit span backward; Listening span comp. = Listening span completion;WIAT=Wechsler Individual Achievement Test; WISC-III =
Wechsler Intelligence Scale for Children —Third Edition; WOND = Wechsler Objective Numerical Dimensions; WRAT = Wide Range Achievement Test; WJ-III = Woodcock Johnson
III — Tests of Achievement.

a Variables controlled for in group comparisons (e.g., controlling for age in ANCOVA).
b Scores had to meet inclusion criteria (e.g. IQ>80), scores were used for group assignment (e.g. reading scores used for group assignment to MD or MD+RD), or scores between

groups were tested for differences.
c Variables accounted for in regression equations.
d Groups matched on variables.
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importance of domain specific knowledge to general cognitive
performance including memory (review in Bjorklund, 2005).

Math difficulties are more consistently predicted by counting span
versus backward digit span. In several studies, counting span distin-
guishes children with math difficulties from their typically achieving
peers (Andersson& Lyxell, 2007;Geary,Hoard, Byrd-Craven, &DeSoto,
2004; Hitch &McAuley, 1991; Passolunghi & Siegel, 2001, 2004; Siegel
& Ryan, 1989; Wu et al., 2008). The findings are not as consistent for
digit span backward: several studies report null findings (Geary et al.,
2000; Landerl et al., 2004; Temple & Sherwood, 2002; van der Sluis
et al., 2005); some studies find differences between groups of children
with math difficulties and typically achieving children (D'Amico &
Guarnera, 2005; Fuchs et al., 2008; Passolunghi & Cornoldi, 2008;
Passolunghi & Siegel, 2001, 2004; Rosselli, Matute, Pinto, & Ardila,
2006; Swanson & Beebe-Frankenberger, 2004; Wu et al., 2008); and
yet other studies find that digit span backward specifically distin-
guishes childrenwith severemath difficulties from both childrenwith
less severe math difficulties, and children with typical achievement in
math (Mabbot & Bisanz, 2008).

Digit span backward tasks can be performed using non-verbal
strategies. Although most researchers agree that digit span backward
is a measure of simultaneous storage and transformation, in what form
is the relevant information stored andhow is it transformed?Theredoes
not appear to be a definitive answer to this question, as strategy use is
likely to be important. Digit span backward is most often described as a
measure of verbal working memory, involving both the phonological
loop and the central executive, and in some studies digit span backward
does show effects of phonological similarity (Rosen & Engle, 1997).
However, another possibility articulated most recently by Berch (2008)
is that visual–spatial representations may play a role in digit span
backward performance. This may be particularly true for younger
children as developmental studies suggest there is less separation of the
verbal and visual–spatial working memory systems before 8 years of
age (Hale, Bronik,& Fry, 1997).Neuropsychological studies lend support
for the role of visual–spatial representations in digit span backward.
Positron emission tomography (PET) studies have shown that visual
processing areas are activated during digit span backward, even when
participantswere blindfolded so that activations could not be attributed
to visual-processing per se (Gerton et al., 2004). Similarly, a series of
cognitive experiments by Li and Lewandowsky (1995) suggest that
visual processes are implicated in backward recall but not in forward
recall of information. While it is commonplace to ascribe verbal
strategies to tasks designed to tap visual–spatial processes, these
findings suggest that the reverse may also be true: Overtly verbal tasks
can be approached using visual–spatial strategies, so visual–spatial
processing may contribute to performance on digit span backward.
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Without knowing how the digit span backward task is being performed
by individuals, it is difficult to say exactly what aspect(s) of working
memory this task is measuring.

Digit span backward might draw to greater or lesser extents on
central executive processes related to differences in number words across
languages. It is interesting to note that studies conducted with Italian-
or Spanish-speaking children more consistently report that children
with math difficulties perform worse on digit span backward than
same-aged peers (D'Amico & Guarnera, 2005; Passolunghi & Cornoldi,
2008; Passolunghi & Siegel 2001, 2004; Rosselli, Matute, Pinto and
Ardila, 2006); the findings for English- and Dutch-speakers are often
negative (Geary et al, 1999, 2000; Landerl et al., 2004; Temple &
Sherwood, 2002; van der Sluis et al., 2005; but see Mabbot & Bisanz,
2008). In contrast to English and Dutch, the majority of Italian and
Spanish number words from one to nine have longer word lengths
because they are not monosyllabic. Accordingly, the Spanish and
Italian numbers take longer to articulate.Word length and articulation
rate are strongly related to memory span in children (Hulme,
Thomson, Muir, & Lawrence, 1984). Italian and Spanish children
using verbal strategies may require greater executive resources to
supplement the storage and rehearsal processes of the phonological
loop, or greater controlled attention. Alternatively, they may use
visual–spatial strategies when completing digit span backward given
the task demands. In any event, the underlying mechanisms
and processes used on digit span backward tasks may vary across
languages.

In summary, the question of whether verbal working memory
serves to distinguish children with and without mathematical
difficulties is complicated by several factors. Measures of verbal
working memory that use number may be more strongly related to
math difficulties than measures that do not use number because of
their domain-specificity; that is, these working memory materials
draw from the same domain in which the child is impaired. This is not
a commentary on the usefulness of numerical working memory tasks
in math research, but rather an observation about how such studies
that show relations between numerical working memory and
mathematical disabilitymight be interpreted. Evenwhen only domain
specific working memory tasks are considered several additional
issues need to be examined that may affect the interpretation of
studies relating these measures of working memory to math
difficulties. These factors include: the type of numerical information
that needs to be manipulated in the working memory task; the
strategies that children bring to bear on these working memory tasks,
possibly as a function of age; the severity of the difficulties in math;
and the processing requirements of number words in different
languages.

2.2. Visual–spatial working memory and math difficulties

Visual–spatial working memory tasks have been employed less
often than verbal or numerical working memory tasks in studies of
children and math disability. Visual–spatial working memory and the
visual–spatial sketchpad are sometimes subdivided according to
storage of static visual information, such as information about form
and color, and storage of dynamic visual information, such as
information about motion, location, and direction. These divisions
reflect those in the literature over whether the critical distinction in
the nonverbal domain is that between visual working memory and
visual–spatial working memory (paralleling neuroimaging studies
that make the distinction between the processing of object-based or
location-based information, e.g., Baker, Frith, Frackowiak, & Dolan,
1996) or between passive and active aspects of visual–spatial working
memory, the former requiring the recall of visual–spatial information
as presented, and the latter requiring some manipulation of that
information such as backwards recall (Cornoldi, Rigoni, Venneri, &
Vecchi, 2000).
Static and dynamic tasks can vary greatly between studies.
Common static visual tasks include the static matrices task and a
more demanding variant, the visual matrix span task. In static
matrices tasks, participants are asked to remember the location of
the black target blocks in a display in which half the blocks are black
and half are white. The visual matrix span task is similar to the static
matrices task, however, following the display, participants are asked a
process question (e.g. Were there any target blocks in the first
column?), and are then asked to recall the location of the target
blocks. Dynamic visual–spatial tasks include dynamic matrices and
Corsi block tasks. In dynamic matrices, the blocks in an empty matrix
sequentially flash on and off, and participants recall in correct order
the location of the blocks that had flashed. In Corsi block tasks, a series
of block tapsmust be replicated in sequence. Yet other studies employ
both a forward and a backward version of the Corsi blocks: the
forward version is said to measure passive visual–spatial working
memory and the backward version is said to measure active visual–
spatial working memory (Passolunghi & Cornoldi, 2008).

Studies employing visual or visual–spatial memory measures differ
from each other in a number of ways and these differences between
studies make it difficult to draw conclusions across the relatively small
number of studies. These studies vary with respect to: the age of the
participants; how math difficulties are identified (e.g., Temple &
Sherwood, 2002 versus van der Sluis et al., 2005), including the severity
of the difficulties inmath (e.g., van der Sluis et al., 2005 versusWu et al.,
2008); the nature of the tasks used to measure the visual–spatial
sketchpad and visual–spatial workingmemory; and assumptions about
what various tasks measure [(e.g., Is Corsi blocks forward a measure of
dynamic visual–spatialworkingmemoryor ameasureof passivevisual–
spatial working memory?) (Passolunghi & Cornoldi, 2008)]. The range
of findings is large and often inconsistent as illustrated by the following
list: both static and dynamic measures have been found to differentiate
children with math difficulties from typically developing peers
(D'Amico & Guarnera, 2005; Reukhala, 2001); only dynamic visual–
spatial working memory not static visual working memory differenti-
ates the groups (McLean & Hitch, 1999; van der Sluis et al., 2005); even
dynamic visual–spatial tasks do not differentiate the groups (Andersson
& Lyxell, 2007; Bull, Johnston & Roy, 1999; Temple & Sherwood, 2002;
Wu et al., 2008); and only an “active” backwards version of a dynamic
visual–spatial task (Passolunghi & Cornoldi, 2008) differentiates the
groups. Other studies have combined static and dynamic tasks as a
measure of the visual–spatial sketchpad (Geary, Hoard, Byrd-Craven
et al., 2007, 2008) and report either null findings or trends.

2.3. Conclusions

What do these studies tell us about working memory in children
with math difficulties? When one considers the findings across
studies, children with math difficulties differ from children without
difficulties, though it could be on verbal working memory composites
that sometimes contain numerical information, on static and/or
dynamic visual–spatial memory tasks, on composite measures of
numerical working memory, or on digit span backwards in languages
with multi-syllabic number words. Although such findings are clearly
of interest to the study of individual differences in math, they are not
sufficient for making causal claims about relations of working
memory and math, nor are the findings coherent enough to propose
a model of how working memory might be implicated in mathemat-
ical disability (see Doehring, 1978 for a similar discussion of problems
with univariate theories of reading disabilities). This is a question of
validity— do intraindividual differences in a cognitivemarker variable
such as working memory help to explain math disabilities? It is
important to note that low performance on a number of cognitive
variables is not unexpected in children with severe learning
difficulties. This has been called profile flatness (Fletcher et al.,
2007) and arises from the lack of independence in the tests that are
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used to measure both cognitive marker variables and academic
achievement. This is a question of reliability and is worth keeping in
mind when interpreting putative differences in working memory
between groups of children with averagemath achievement, vs. those
with some difficulties in math achievement, vs. those with severe
difficulties in math.

What are some of the barriers to understanding whether and
how working memory is related to math disabilities? An under-
standing of which aspects of working memory are deficient in
children with math difficulties is obscured by a lack of precision in
knowing the particular strategies and processes that the child brings
to bear on working memory tasks (possibly as a function of age and
language) and a theory that links these working memory processes
to particular aspects of mathematical learning and performance.
There is also a lack of consistency and consensus across studies
about how to measure the components of verbal and visual–spatial
working memory that makes it difficult to develop a core body of
knowledge on the relation of working memory and math. Some of
the studies reviewed in the next section as well as the general
conclusions at the end of this review deal more specifically with
these issues.

3. Working memory andmathematical learning and performance:
how specific are these relationships?

The reader is referred to Table 1 for summary information on
several of the studies discussed in this section. Several studies
examine the relationship between working memory and mathemat-
ical skills, but do so taking other academic and cognitive factors into
account in order to better isolate the contribution of workingmemory
to mathematical outcomes and mathematical development. Other
studies among typically achieving individuals and children with math
difficulties seek to relate working memory performance to specific
mathematical outcomes or processes. Information provided by both of
these approaches is useful for constructing a theory of how working
memory and math are related.

Is working memory related to mathematical achievement and specific
mathematical skills when other cognitive and academic factors are taken
into account? Berg (2008) examined the contribution of verbal–
numerical and visual–spatial working memory composites (in
children in third to sixth grades) to performance on a mathematical
test of a range of skills, such as single- and multi-digit arithmetic,
fractions, and algebra. Verbal–numerical working memory and
visual–spatial working memory contributed unique variance to
mathematical performance, independent of chronological age, short-
term memory, reading, and processing speed (see also Wilson &
Swanson, 2001). In children with and without significant math
difficulties, Swanson and Beebe-Frankenberger (2004) found that a
working memory composite (verbal and visual–spatial measures)
predicted solution accuracy on word problems independent of several
academic and cognitive variables, such as fluid intelligence, reading
skill, arithmetic achievement, knowledge of algorithms, phonological
processing, short-term memory, inhibition, and so forth. In a sample
of first grade children, designated as either not at risk for math
difficulty or at risk and assigned to a tutor or control condition, Fuchs
et al. (2005) found that a verbal working memory task (listening
span) predicted end of year performance on curriculum based
measures of computation, math concepts/applications, and math
word problem solving (but not on an operation-specific addition fact
fluency test, and a standardized calculation measure), after partialing
out the influence of treatment effects and other cognitive variables,
such as attention, language, nonverbal problem solving, phonological
processing, and processing speed.

These findings suggest that workingmemory is related to a variety
of mathematical outcomes when other cognitive and academic factors
are taken into account, suggesting a particular role for working
memory in mathematical performance. However, there also appears
to be some specificity in this relation; for example, the role of verbal
working memory may be greater for some aspects of math than it is
for others.

Is working memory related to mathematical outcomes when domain-
specific mathematical abilities are taken into account? While the above
studies indicate a role for working memory in math after taking into
consideration a range of cognitive and even academic achievement
variables, an increasingly important question in the theoretical
literature is whether domain-general abilities such as working
memory significantly predict performance after taking into account
domain-specific numerical abilities. One of the theoretical disputes in
the math disability literature concerns whether math disabilities
emerge from deficits in general purpose cognitive mechanisms such
as working memory (Geary, Hoard, Nugent et al., 2007) or from
deficits in domain-specific cognitive mechanisms specialized for
dealing with small exact and large approximate representations of
quantity, which are thought to be present, perhaps from birth, in
typically developing human infants (Butterworth, 1999; Butterworth
& Reigosa, 2007). Domain-specific views of math disabilities do not
discount that domain-general or general purpose cognitive resources,
such as working memory and language, play a role in mathematical
achievement and performance, but rather argue that core deficits in
these domain-specific abilities, assumed to be present early in life,
have much to do with later difficulties in acquiring mathematical
skills in the preschool and school-age years. Two recent studies take
both domain-specific quantitative abilities and general purpose
mechanisms such as working memory abilities into account in
predicting mathematical development and disability (Halberda,
Mazzocco, & Feigenson, 2008; Kroesbergen, Van Luit, Van Lieshout,
Van Loosbroek, & Van de Rijt, 2009).

Kroesbergen et al. (2009) investigated whether domain-general
(i.e. fluid intelligence, language and executive functions) and domain
specific factors (subitizing — the ability to rapidly enumerate small
numbers of objects without counting) predict early math skills in 5 to
7-year old children. Executive functions (which included digit span
backwards as the measure of working memory updating) and
subitizing explained a significant portion of the variance in children's
counting skills, after controlling for language and intelligence. This
study suggests that both domain general and domain specific abilities
contribute to early math skills.

Halberda et al. (2008) related ninth graders' current domain
specific abilities (i.e. approximate number systemacuity) andprevious
mathematical achievement while controlling for 16 domain general
abilities (general intelligence, rapid lexical access, visual–spatial
reasoning, working memory, and so forth). Approximate number
system acuity was assessed using a more/less judgment task. Children
were presented with spatially intermixed blue and yellow dots on a
computer screen for too brief a time (200 ms) to count the dots.
They indicated whether there were more blue or yellow dots. Math
achievement had been measured each year from kindergarten to 6th
grade, and domain general abilities had been measured in grade 3.
Approximate number system acuity was related to math achievement
at every assessment point, and this domain specific ability retrospec-
tively predicted the math achievement of individual students from as
early as kindergarten. Moreover, the findings indicated that approx-
imate number system acuity was related to third grade mathematical
achievement even after controlling for all domain general abilities.

These studies suggest that domain specific abilities thought to be
present early in life may be particularly related to mathematical
achievement, and thus, highlight the importance of testing both
domain specific and domain general factors for predicting math
outcomes. Such studies are likely to be important for determining
whether working memory not only provides a supporting role for
mathematical performance, but also for whether it is causally
implicated in the development of mathematical abilities and
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disabilities. Research that considers both domain-specific and do-
main-general abilities has the potential to contribute to the
construction of developmental models of mathematical ability and
disability.

How working memory and math are related depends on age and
specific math outcomes. Studies that use working memory to predict
specific mathematical outcomes and processes in children of different
ages suggest that whether verbal or visual–spatial workingmemory is
related to performance on mathematical tasks depends on age (a
proxy for skill level and experience with the mathematical task) and
the mathematical task itself. In preschoolers, the research of Bisanz
and colleagues (Bisanz et al., 2005; Klein & Bisanz, 2000; Rasmussen &
Bisanz, 2005) shows that the cognitive resources that children recruit
to solve particular problems change over fairly short developmental
time windows. For example, visual–spatial working memory (a
preschool-friendly version of a Corsi block forward task) was the
best predictor of performance for preschoolers on nonverbal addition
and subtraction problems (e.g., examiner places two disks on a mat,
covers the display, slides 2 more disks behind the screen and asks the
child to replicate what is on the examiner's mat: a 2+2 problem). In
contrast, visual–spatial working memory did not predict performance
on this same task by grade 1. Measures of phonological working
memory and central executive components of working memory were
the best predictors of the same problems presented verbally in the
older children. These findings are consistent with Huttenlocher,
Jordan, and Levine's (1994) proposal that preschoolers solve a variety
of mathematical problems through the use of mental models. As
language skills become stronger and verbal memory develops,
children may begin to rely more on verbal memory codes to
accomplish a variety of mathematical tasks including those that may
have been solved using different cognitive resources at an earlier age.

Several recent studies of school age children that either contrast
different age groups and/or take a wide variety of mathematical skills
into account provide insight into the complexity of the relationships
between working memory and math. In younger (7–8year olds) and
older (9–10year olds) children, Holmes and Adams (2006) examined
the contribution of the central executive (Listening span), visual–
spatial sketchpad (a Mazes memory task), and phonological loop
(non-word list recall) to achievement in a variety of mathematical
domains: number and algebra (e.g. Sarah goes to the shop. She has
$2.00. She spends $1.20 on a book. How much money has she got left
from the $2.00?); geometry knowledge (shape, space) and measure-
ment skills; data handling; and mental arithmetic. A cluster analysis
divided the mathematical items into two discrete categories that
differed depending on age: For the younger children, items fell into
“pure” math (namely number and algebra, and mental arithmetic
items) and “applied” math (mainly geometry and measurement and
data handling items); whereas for the older children, the resulting
clusters were easy and difficult items. In the younger children, the
central executive, and to a lesser extent the visual–spatial sketchpad,
contributed to performance on both the pure and applied areas of
math. For the older children, the central executive predicted
performance on both the easy and the hard items, but the
phonological loop task predicted performance on the easy items,
and the visual–spatial sketchpad task predicted performance on the
difficult items (also see Holmes, Adams, and Hamilton, 2008). In
adolescents, relations between visual–spatial working memory and
math have been found (Kyttala & Lehto, 2008; Reukhala, 2001) with
some differences reported for static and dynamic measures of visual–
spatial workingmemory, depending on the particular math skill being
measured (e.g., static related to mental arithmetic and dynamic
related to geometry and word problem solving).

One recent study that has combined an individual difference
approach with more precision over mathematical processes looked at
components of working memory as mediators of performance on
several mathematical tasks in typically developing children and in
children with less and more severe difficulties in math (Geary, Hoard,
Byrd-Craven et al., 2007). For children in grade 1 with more severe
disabilities, tasks tapping the central executive (consisting of verbal
and numerical working memory tasks) fully or partially mediated
performance of this group in detecting errors on a measure of
counting knowledge, retrieval errors in simple arithmetic, and
accuracy on a number line estimation task. In contrast, the
phonological loop or verbal memory composite (digit, word, and
non-word span) and the visual–spatial memory composite (static and
dynamic tasks) contributed to more specific deficits in mathematical
cognition: Verbal memory was integral to counting knowledge and
visual–spatial memory was important for the use of min counting
while solving complex problems, to number line estimation, and to
identifying and processing number-set information.

3.1. Conclusions

In general, the findings from studies of preschoolers, elementary-
school children, and adolescents suggest that executive and visual–
spatial skills may be recruited for the learning and application of new
mathematical skills/concepts, whereas the phonological loop may
come into play after a skill has been learned. This may explain the
seeming paradox in the literature that it is both preschoolers and
adolescents who use visual–spatial resources to accomplish develop-
mentally appropriate mathematical tasks. In the preschool math
literature, a mental models hypothesis has been applied to explain
how visual–spatial memory resources are linked to mathematical
learning and performance. What is unclear is whether this same
explanation can be applied to new mathematical learning and/or the
use of particular strategies in older children though it might help to
explain some counter-intuitive findings such as why visual–spatial
abilities are sometimes related to performance on math word
problem solving (see Geary, 1996). These studies point to the
importance of task analysis and knowledge of strategy use as a
function of age and experience for both the predictors (working
memory task) as well as the outcomes (particular mathematical task)
when trying to understand the relation of workingmemory andmath.
Recent work looking more closely at children with math difficulties
suggests that different aspects of working memory mediate different
aspects of mathematical performance in severely disabled children.
These findings serve to further underline a set of common themes
about working memory and math that emerge from experimental,
disability, and developmental studies, which will be addressed in the
Conclusions and Future Directions section below.

4. Longitudinal studies of working memory and math

One type of study that may be particularly important for
understanding potentially causal and/or supporting roles for working
memory in mathematical cognition and development are longitudinal
studies that either relate growth in executive processes such as working
memory to math outcomes or relate early executive processes to
growth in mathematical skills. These studies investigate specific
executive processes such as updating, inhibitory control, and attention
switching in relation to math, in line with models of workingmemory
that focus on the importance of attentional control (e.g. Engle, 2002).
Such longitudinal investigations provide a unique opportunity for
examining the cognitive underpinnings of later developing math
abilities and impairments. These studies have investigated the relation
of abilities such as working memory updating and inhibitory
processing (Blair & Razza, 2007; Bull, Espy, & Wiebe, 2008; English,
Barnes, Taylor, & Landry, 2009; Mazzocco & Kover, 2007) as well as
phonological processes (Hecht, Torgesen, Wagner, & Rashotte,
2001) to later math outcomes. Blair and Razza (2007) found that
inhibitory control in preschoolers predicted kindergarten mathemat-
ical abilities, such as basic numeracy, knowledge of shapes, quantity,
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relative size, addition, subtraction, and simple graphic relations, as
well as kindergarten reading abilities. Bull et al. (2008) found that
visual–spatial working memory in the preschool years predicted
math performance at the end of the third year of primary school on
problems of simple and complex arithmetic, number sequencing, and
graphical representation of data. In contrast, verbal working memory
and inhibitory processes were related to general learning outcomes in
both math and reading. Mazzocco and Kover (2007) assessed
executive skills, such as fluency, inhibition, and working memory, as
well as math and reading achievement in the same children at first,
third and fifth grades. There were relations between executive
processes and math and reading. However, those for math were
dependent on age leading the authors to suggest that strong executive
skills in the early primary grades may help mathematical learning and
performance, but they are not necessarily associated with mathemat-
ical performance across age or across all mathematical tasks or all
domains of mathematics. Hecht et al. (2001) found that latent
variables representing memory processes were uniquely correlated
with individual differences in a standardized estimate of the total
number of mathematical computation algorithms mastered. Working
with grades 2–5, Hecht and colleagues examined the unique role of
latent workingmemory on growth in general computation skill, while
controlling for prior mathematical skill, reading, speed of retrieving
phonological name codes, phonological awareness, and vocabulary.
Working memory was correlated with performance at each grade. An
especially relevant finding was that latent memory capacity was
uniquely associated with growth in mathematical computation skills
while accounting for all of these variables from second- to third-grade.

4.1. Conclusions

These studies point to ways in which longitudinal informationmay
be important for understanding growth in mathematical skills
particularly when contrasted to growth in other academic domains
such as reading. The findings suggest that some executive processes
may be more generic in terms of supporting learning, while others,
such as visual–spatial working memory may be more specific to early
mathematical learning, which provides converging evidence for some
of the findings from other types of studies discussed earlier. When
combined with the studies from sections above, a number of
possibilities suggest themselves for further study. Studies that assess
how growth in components of working memory and executive
processes are related to the age at which or rate at which new
mathematical skills are acquired would be useful particularly when
compared to the consolidation and mastery phases for those same
math skills. Studies that test whether growth in different components
of working memory and executive processes differentially predict
growth in or level of skill in different mathematical domains such as
arithmetic compared to word problem solving and geometry would
begin to provide the type of information that is needed to construct a
developmental model of mathematical ability and disability. Finally,
studies that compare the predictive value of level and growth in
general purpose cognitive mechanisms (i.e., workingmemory) to that
provided by the integrity of domain-specific number mechanisms
(i.e., subitizing and large quantity comparison) for explaining a
variety of mathematical outcomes would also be useful for proposing
comprehensive models of mathematical development and disability.

5. Conclusions and future directions

Research on working memory and math across experimental,
math disability, and cross-sectional and longitudinal developmental
studies reveal that working memory is indeed related to mathemat-
ical performance in adults and in typically developing children and in
children with difficulties in math. However, they also amply
demonstrate that the relations between working memory and math
are complex and likely depend on several factors including, but not
limited to: age, skill level, language of instruction, the way in which
mathematical problems are presented, the type of mathematical skill
under consideration and whether that skill is in the process of being
acquired, consolidated, or mastered. The type of working memory
task used and the strategies that individuals of different ages and skill
levels may bring to bear in performing those tasks will also determine
what one understands about working memory in relation to math.
This list is perhaps a good indication that what is currently lacking in
the field is a sufficiently comprehensive model of mathematical
processing, particularly in relation to skill acquisition, that can handle
current findings on workingmemory as well as provide the basis from
which to guide new discoveries and inform practice. To this end, we
offer suggestions about what the necessary features of such a theory
might involve.

More precision in the description of math outcomes and working
memory measures is important. For math, this includes obtaining
some control over and knowledge of task-specific sources of variance
as well as better specification of the specific math subskills that are
being measured. For example, does the math skill being measured
draw on procedural, conceptual, or factual mathematical knowledge
(Bisanz & LeFevre, 1990). Does the domain of math matter? Do
presentation variables and strategy use make a difference? Given the
diverse nature of mathematical domains and skills, particularly with
respect to the types of math abilities and skills that are being acquired
at different ages, the use of standardized tests that measure many
types of math skills together is likely to be uninformative for
specifying the relation of working memory and math (Ginsburg,
Klein, & Starkey, 1998). For working memory, this includes better
specification of the type of memory that is measured, including the
code (verbal, visual, visual–spatial and central executive), what is
required to be done with the code (maintenance versus processing),
and what strategies individuals bring to bear on working memory
tasks. We do not see these as merely instrumentation issues; rather,
we think that task analysis in both math and working memory is
necessary for understandingmathematical development— ability and
disability.

There is a need to account for other factors that might mediate
or moderate the relations between working memory and math.
Taking the research discussed above as a whole, there is evidence
for interactions of child factors, such as age, math ability level, and
language of instruction, and the characteristics of the mathematical
tasks under consideration that may affect how working memory
and math are related. However, exploration of these potential
interactions are typically not included in the design of particular
studies (but see Geary, Hoard, Byrd-Craven et al., 2007). Also
missing from the literature is a discussion of the overlap between
attention and working memory in relation to mathematics. One of
the most consistent effects to have emerged in math disability
research in recent years is the strong relation between math and
inattention (Fuchs et al., 2006; Raghubar et al., 2009). As well,
math disability and attention disorders have a high rate of co-
occurrence (Fletcher, 2005; Zentall, 2007). There is considerable
overlap between working memory and attention in some theoret-
ical frameworks including developmental models of attention and
executive functions (Engle, 2002; review in Garon, Bryson, & Smith,
2008) and in recent empirical studies (e.g., Alloway, Gathercole,
Kirkwood, & Elliott, 2009; Liu & Tannock, 2007). This overlap
suggests that the study of working memory and attention in
relation to math might profit from some greater integration than
has hitherto been provided in studies of the predictors of
mathematical development and performance.

We have not said much in this paper about potential interactions
between working memory and mathematics instruction because not
much data exist to guide our thoughts (see Case & Okamoto, 1996 and
Fuchs et al., 2005 for examples). In reading, the search for child
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cognitive characteristics by intervention interactions has proven
elusive (Fletcher et al., 2007; but see Connor, Morrison, & Katch,
2004). Whether this will also be the case with math is an empirical
question. It is interesting to think about what current math curricula
in general education classrooms look like in this regard — they
emphasize visual–spatial concepts and executive thinking abilities
(Blair, Gamson, Thorne, & Baker, 2005). Children in special education
may be less exposed to the teaching of these higher-level problem-
solving skills (Fletcher et al., 2007). Studying child by instructional
interactions in children of different ages, skill levels, and cultures that
may be associated with different teaching practices, whether in general
or special education, might help to inform our models of mathematical
processing including the place of working memory in those models.

Decades of research on interventions to train sensory and cognitive
processes, which did not directly instruct academic content, have been
shown to be ineffective for improving academic outcomes (reviewed in
Barnes & Fuchs, 2008; Fletcher et al., 2007). Whether cognitive training
of a domain general ability such as working memory (e.g., Olesen,
Westerberg, & Klingberg, 2003; Thorell, Lindqvist, Bergman, Bohlin, &
Klingberg, 2008) in combination with high quality domain specific
instruction in mathematics would prove to be effective particularly for
younger children at risk (e.g., Barnett et al., 2008) and for older children
with difficulties in math remains to be seen.

Given the importance of strategy use in mathematical processing
(and in working memory tasks too) that emerges from dual task,
developmental, individual difference and neuroimaging studies, the
development of a theory of mathematical processing also needs to
explain the links between strategy discovery, strategy selection, and
execution of mathematical knowledge and specific aspects of working
memory. Ideally, such a theory of mathematical processing would link
the findings from cognitive, developmental, and disability studies on
working memory and math with findings on how the brain processes
mathematical information at different ages, ability levels, and in
response to instruction.
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